(1) Song, H. J.; Jia, X. H.; Zhang, X. Q. Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra. J. Mater. Chem. 2012,22, 22699–22705.
(2) Zhao, C.; Zhang, G.; Han, W.; Fu, J.; He, Y.; Zhang, Z.; Xie, E. Electrospun In2O3/α-Fe2O3 heterostructure nanotubes for highly sensitive gas sensorapplications. CrystEngComm. 2013,15, 6491–6497.
(3) Song, H. J.; Jia, X. H.; Qi, H.; Yang, X. F.; Tang, H.; Min, C. Y. Flexible morphology-controlled synthesis of monodisperse α-Fe2O3 hierarchical hollow microspheres and their gas-sensing properties. J. Mater. Chem. 2012,22, 3508–3516.
(4) Kim, J.; Kim, W.; Yong, K. CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing. J. Phys. Chem. C 2012, 116, 15682–15691.
(5) Sun, P.; He, X.; Wang, W.; Ma, J.; Sun, Y.; Lu, G. Template-free synthesis of monodisperse α-Fe2O3 porous ellipsoids and their application to gas sensors. CrystEngComm. 2011, 14, 2229–2234.
(6) Wang, Z.; Zhou, L. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012,24, 1903–1911.
(7) Guo, Y.; Hu, J.; Wan, L. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.
(8) Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.
(9) Litter, M. I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B: Environ. 1999, 23, 89–114.
(10) Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. A red metallic oxide photocatalyst. Nat. Mater. 2012,11, 595–598.
(11) Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater. 2002, 14, 2812–2816.
(12) Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano. 2010, 4, 6001–6013.
(13) Wei, W.; Wang, Z.; Liu, Z.; Liu, Y.; He, L.; Chen, D.; Umar, A.; Guo, L.; Li, J. Metal oxide hollow nanostructures: fabrication and Li storage performance. J. Power Sources 2013,238, 376–387.
(14) Wu, Z.; Yu, K.; Zhang, S.; Xie, Y. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 2008, 112, 11307–11313.
(15) Liang, H.; Wang, Z. Facile synthesis and photocatalytic activity of cocoon-like hollow hematite nanostructures. Mater. Lett. 2013, 96, 12–15.
(16) Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 987–993.
(17) Dai, Q.; Tang, J. Magnetic properties of CoO nanocrystals prepared with a controlled reaction atmosphere. RSC Adv. 2013,3, 9228–9233.
(18) Dai, Q.; Tang, J. The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique. Nanoscale2013,5, 7512–7519.
(19) Wang, X.; Yu, L.; Hu, P.; Yuan, F. Synthesis of single-crystalline hollow octahedral NiO. Cryst. Growth Des. 2007, 7, 2415–2418.
(20) Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–1338.
(21) Hu, X.; Zhang, T.; Jin, Z.; Huang, S.; Fang, M.; Wu, Y.; Zhang, L. Single-crystalline anatase TiO2 dous assembled micro-sphere and their photocatalytic activity. Cryst. Growth Des. 2009, 9, 2324–2328.
(22) Israr-Qadir, M.; Jamil-Rana, S.; Nur, O.; Willander, M.; Larsson, L.; Holtz, P. O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceram. Int.2014, 40, 2435–2439.
(23) Roth, W. L. Magnetic structures of MnO, FeO, CoO, and NiO. Phys. Rev. 1958, 110, 1333–1341.
(24) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496−499.
(25) Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J. Mater. Chem.2012,22, 13826−13831.
(26) Guan, H.; Wang, X.; Li, H.; Zhi, C.; Zhai, T.; Bando, Y.; Golberg, D. CoO octahedral nanocages for high-performance lithium-ion batteries. Chem. Commun. 2012, 48, 4878−4880.
(27) Jiang, J.; Liu, J.; Ding, R.; Ji, X.; Hu, Y.; Li, X.; Hu, A.; Wu, F.; Zhu, Z.; Huang, X. Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 2010, 114, 929−932.
(28) Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 2013, 13, 2078–2085.
(29) Lu, A.; Chen, Y.; Zeng, D.; Li, M.; Xie, Q.; Zhang, X.; Peng, D. L. Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods. Nanotechnology 2014,25, 035707.
(30) Liao, L.; Zhang, Q.; Su, Z.; Zhao, Z.; Wang, Y.; Li, Y.; Lu, X.; Wei, D.; Feng, G.; Yu, Q. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 2014, 9, 69–73.
(31) Lin, H. K.; Chiu, H. C.; Tsai, H. C.; Chien, S. H.; Wang, C. B. Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide. Catal. Lett. 2003, 88, 169–174.
(32) Barrera, E.; González, I.; Viveros, T. A new cobalt oxide electrodeposit bath for solar absorbers. Sol. Energy Mater. Sol. Cells 1998, 51, 69-82.
(33) Yin, J.; Wang, Z. L. Ordered self-assembling of tetrahedral oxide nanocrystals. Phys. Rev. Lett. 1997, 79, 2570–2573.
(34) Ghosh, M.; Sampathkumaran, E.; Rao, C. Synthesis and magnetic properties of CoO nanoparticles. Chem. Mater. 2005, 17, 2348–-2352.
(35) Xu, C.; Liu, Y.; Xu, G.; Wang, G. Fabrication of CoO nanorods via thermal decomposition of CoC2O4 precursor. Chem. Phys. Lett. 2002, 366, 567–571.
(36) Zhang, Y.; Zhu, J.; Song, X.; Zhong, X. Controlling the synthesis of CoO nanocrystals with various morphologies. J. Phys. Chem. C2008, 112, 5322–5327.
(37) Wang, H.; Si, H.; Zhao, H.; Du, Z.; Li, L. S. Shape-controlled synthesis of cobalt oxide nanocrystals using cobalt acetylacetonate. Mater. Lett. 2010–410., 64, 408
(38) Zhang, Y.; Zhong, X.; Zhu, J.; Song, X. Alcoholysis route to monodisperse CoO nanotetrapods with tunable size. Nanotechnology 2007, 18, 195605.
(39) Sun, G.; Zhang, X.; Cao, M.; Wei, B.; Hu, C. Facile synthesis, characterization, and microwave absorbability of CoO nanobelts and submicrometer spheres.J. Phys. Chem. C 2009, 113, 6948–6954.
(40) Ramos, J.; Millan, A.; Palacio, F. Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 2000, 41, 8461–8464.
(41) Heli, H.; Yadegari, H. Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization. Electrochim. Acta 2010, 55, 2139–2148.
(42) Tracy, J. B.; Weiss, D. N.; Dinega, D. P.; Bawendi, M. G. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles. Phys. Rev. B: Condens. Matter Mater. Phys. 2005,72, 064404.
(43) Jia, X.; Chen, D.; Jiao, X.; He, T.; Wang, H.; Jiang, W. Monodispersed Co, Ni-ferrite nanoparticles with tunable sizes: controlled synthesis, magnetic properties, and surface modification. J. Phys. Chem. C 2008,112, 911–917.
(44) Ghosh, M.; Sampathkumaran, E. V.; Rao, C. N. R. Synthesis and magnetic properties of CoO nanoparticles. Chem. Mater. 2005,17, 2348–2352.
(45) Ambrose, T.; Chien, C. L. Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers. Phys. Rev. Lett. 1996, 76, 1743–1746.
(46) Tian, Y.; Yu, B.; Li, X.; Li, K. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J. Mater. Chem. 2011, 21, 2476–2481.
(47) Tian, Y.; Yu, B.; Yang, H. Y.; Liao, J. Monodispersed silica nanospheres encapsulating Fe3O4 and LaF3: Eu3+ nanoparticles for MRI contrast agent and luminescent imaging. Funct. Mater. Lett. 2013, 6, 1250052. |