Syntheses, Crystal Structures and Properties of Two New Zn Based Boron Imidazolate Frameworks
毕明月;温一航;张海霞;张健
a (Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces,Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China)
b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
Syntheses, Crystal Structures and Properties of Two New Zn Based Boron Imidazolate Frameworks
BI Ming-Yue;WEN Yi-Hang;ZHANG Hai-Xia;ZHANG Jian
a (Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces,Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China)
b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
Two new boron imidazolate frameworks (BIFs), Zn2[HBH(2-mim)3]2(1,2-PEA)2(EG)2 (BIF-120, EG = ethylene glycol) and Zn[BH(2-mim)3](1,2-HPEA) (BIF-121), were successfully synthesized by mixing the KBH(2-mim)3 ligand and the semirigid aromatic dicarboxylate ligand 1,2-benzenediacetic acid (1,2-H2PEA) under solvothermal conditions. In this paper, the two samples were structurally characterized by single-crystal X-ray diffraction and tested by infrared spectroscopy (IR), UV-visible spectroscopy (UV-Vis), thermogravimetric analysis TGA and X-ray powder diffractions. In addition, the solid-state luminescent properties of these crystals were also investigated.
Two new boron imidazolate frameworks (BIFs), Zn2[HBH(2-mim)3]2(1,2-PEA)2(EG)2 (BIF-120, EG = ethylene glycol) and Zn[BH(2-mim)3](1,2-HPEA) (BIF-121), were successfully synthesized by mixing the KBH(2-mim)3 ligand and the semirigid aromatic dicarboxylate ligand 1,2-benzenediacetic acid (1,2-H2PEA) under solvothermal conditions. In this paper, the two samples were structurally characterized by single-crystal X-ray diffraction and tested by infrared spectroscopy (IR), UV-visible spectroscopy (UV-Vis), thermogravimetric analysis TGA and X-ray powder diffractions. In addition, the solid-state luminescent properties of these crystals were also investigated.
We gratefully acknowledge the National Key Research and Development Program of China (No. 2018YFA0208600)
通讯作者:
wyh@zjnu.cn
E-mail: wyh@zjnu.cn
引用本文:
毕明月;温一航;张海霞;张健. Syntheses, Crystal Structures and Properties of Two New Zn Based Boron Imidazolate Frameworks[J]. 结构化学, 2021, 40(7): 865-870.
BI Ming-Yue;WEN Yi-Hang;ZHANG Hai-Xia;ZHANG Jian. Syntheses, Crystal Structures and Properties of Two New Zn Based Boron Imidazolate Frameworks. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2021, 40(7): 865-870.
REFERENCES
(1) Rouffet, M.; de Oliveira, C. A. F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J. A.; Cohen, S. M. From sensors to silencers: quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. J. Am. Chem. Soc. 2010, 132, 8232–8233.
(2) Xue, F.; Kumar, P.; Xu, W.; Mkhoyan, K. A.; Tsapatsis, M. Direct synthesis of 7 nm-thick zinc(II)-benzimidazole-acetate metal-organic framework nanosheets. Chem. Mater. 2017, 30, 69–73.
(3) Combs, A. P.; Zhu, W.; Crawley, M. L.; Glass, B.; Polam, P.; Sparks, R. B.; Metcalf, B. Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J. Med. Chem. 2006, 49, 3774–3789.
(4) Chen, L. Z.; Ji, Q.; Dan, Y. Y. Synthesis, structure, and luminescent and dielectric properties of two novel 1D chains based on a T-shaped tripodal ligand 4-(4,5-dicarboxy-imidazol-2-yl)pyridine loxide. Chin. J. Struct. Chem. 2016, 35, 1728–1735.
(5) Chen, L. Z.; Sun, J.; Ji, Q.; Pan, Q. J.; Huang, Y. Switchable dielectric materials based on 2-methylimidazole. Chin. J. Struct. Chem. 2017, 36, 329–337.
(6) Zhang, J.; Wu, T.; Zhou, C.; Chen, S. M.; Feng, P. Y.; Bu, X. H. Zeolitic boron imidazolate frameworks. Angew. Chem. Int. Ed. 2009, 48, 2580–2583.
(7) Zhang, H. X.; Liu, M.; Wen, T.; Zhang, J. Synthetic design of functional boron imidazolate frameworks. Coord. Chem. Rev. 2016, 307, 255–266.
(8) Wu, T.; Zhang, J.; Zhou, C.; Wang, L.; Bu, X. H.; Feng, P. Y. Zeolite RHO-type net with the lightest elements. J. Am. Chem. Soc. 2009, 131, 6111–6113.
(9) Zheng, S. T.; Wu, T.; Zhang, J.; Mina, C.; Nieto, R. A.; Bu, X. H.; Feng, P. Y. Porous metal carboxylate boron imidazolate frameworks. Angew. Chem. Int. Ed. 2010, 49, 5362–5366.
(10) Wu, T.; Zhang, J.; Bu, X. H.; Feng, P. Y. Variable lithium coordination modes in two- and three-dimensional lithium boron imidazolate frameworks. Chem. Mater. 2009, 21, 3830–3837.
(11) Zhang, H. X.; Wang, F.; Yang, H.; Tan, Y. X.; Zhang, J.; Bu, X. H. Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. J. Am. Chem. Soc. 2011, 133, 11884–11887.
(12) Wang, F.; Shu, Y. B.; Bu, X. H.; Zhang, J. Zeolitic boron imidazolate frameworks with 4-connected octahedral metal centers. Chem. Eur. J. 2012, 18, 11876–11879.
(13) Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalyst. Chem. Soc. Rev. 2017, 46, 2799–2823.
(14) Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B–H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano. 2018, 12, 6, 5333–5340.
(15) Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038.
(16) Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.
(17) Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 38–41.
(18) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 2017, 7, 70–88.
(19) Liu, Q.; Low, Z. X.; Li, L.; Razmjou, A.; Wang, K.; Yao, J. F.; Wang, H. T. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 2013, 1, 11563–11569.
(20) Wang, Y.; Zhang, Z. Z.; Li, C.; Zhang, L. N.; Luo, Z. B.; Shen, J. N.; Lin, H. X.; Long, J. L.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 2018, 140, 14595–14598.
(21) Zhou, M.; Wang, S. B.; Yang, P. J.; Huang, C. J.; Wang, X. C. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936.
(22) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 2004, 10, 1373–1382.
(23) Ma, L. F.; Wang, L. Y.; Hu, J. L.; Wang, Y. Y. Syntheses, structures, and photoluminescence of a series of d10 coordination polymers with R-isophthalate (R = -OH, -CH3, and -C(CH3)3). Cryst. Growth Des. 2009, 9, 5334–5342.
(24) Han, M. L.; Chang, X. H.; Feng, X.; Ma, L. F.; Wang, L. Y. Temperature and pH driven self-assembly of Zn(II) coordination polymers: crystal structures, supramolecular isomerism, and photoluminescence. CrystEngComm. 2014, 16, 1687–1695.
(25) Zhang, L. Y.; Zhang, J. P.; Lin, Y. Y.; Chen, X. M. Syntheses, structures, and photoluminescence of three coordination polymers of cadmium dicarboxylates. Cryst. Growth Des. 2006, 6, 1684–1689.
(26) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howarda, J. A. K.; Puschmann, K. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
(27) Dolomanov, O. V.; Puschmann, H. Accurate hydrogen-atom positions from standard X-ray data: Hirshfeld atom refinement and Olex2. Acta Crystallogr A 2018, 74, e40–e40.