REFERENCES
(1) Bayram, E.; Akyilmaz, E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sensor. Actuat. B Chem. 2016, 233, 409418.
(2) Luo, J.; Ma, Q.; Wei, W.; Zhu, Y.; Liu, R.; Liu, X. Y. Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl. Mater. Inter. 2016, 8, 2102821038.
(3) Wang, X.; Wu, Q. H.; Liu, A. M.; Rodríguez, J. L. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug. Metab. 2017, 49, 395437.
(4) Ejaz, A.; Jeon, S. A highly stable and sensitive GO-XDA-Mn2O3 electrochemical sensor for simultaneous electrooxidation of paracetamol and ascorbic acid. Electrochim. Acta 2017, 245, 742751.
(5) Ko, J. W.; Shin, J. Y.; Kim, J. W.; Park, S. H.; Shin, N. R.; Lee, I. C.; Shin, I. S.; Moon, C. J.; Kim, S. H.; Kim, S. H.; Kim, J. C. Protective effects of diallyl disulfide against acetaminophen-induced nephrotoxicity: a possible role of CYP2E1 and NF-κB. Food Chem. Toxicol. 2017, 102, 156165.
(6) Ali, N. W.; Abdelwahab, N. S.; Abdelrahman, M. M.; EL-Zeiny, B. A.; Tohamy, S. I. Validated univariateand multivariate spectrophotometric methods for determination of paracetamol, ascorbic acid and pseudoephedrine hydrochloride. Anal. Chem. Lett. 2016, 6, 706717.
(7) Liu, X. T.; Na, W. D.; Liu, H.; Su, X. G. Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosens. Bioelectron. 2017, 98, 222226.
(8) Fernandes, T. A. P.; Aguiar, J. P.; Fernandes, I.; Pinto, J. F. Quantification of theophylline or paracetamol in milk matrices by high-performance liquid chromatography, journal of pharmaceutical analysis. J. Pharmaceut. Biomed. 2017, 7, 401405.
(9) Cunha, R. R.; Ribeiro, M. M. A. C.; Munoz, R. A. A.; Richter, E. M. Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis. J. Sep. Sci. 2017, 40, 18151823.
(10) Chen, B.; Chen, D.; Li, F.; Lin, X.; Huang, Q. Graphitic porous carbon: efficient synthesis by a combustion method and application as a highly selective biosensor. J. Mater. Chem. B 2018, 6, 76847691.
(11) Huang, Q.; Lin, X.; Zhu, J. J.; Tong, Q. X. Pd-Au@ carbon dots nanocomposite: facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 2017, 94, 507512.
(12) Sakthivel, M.; Sivakumar, M.; Chen, S. M.; Hou, Y. S.; Veeramani, V.; Madhu, R. A facile synthesis of Cd(OH)2-rGO nanocomposites for the practical electrochemical detection of acetaminophen. Miyamoto. N. Electroanal. 2017, 29, 280286.
(13) Fu, L.; Lai, G.; Yu, A. Preparation of β-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. RSC Adv. 2015, 5, 7697376978.
(14) Huang, T. Y.; Kung, C. W.; Wei, H. Y.; Boopathi, K. M.; Chu, C. W.; Ho, K. C. A high performance electrochemical sensor for acetaminophen based on a rGO-PEDOT nanotube composite modified electrode. J. Mater. Chem. A 2014, 2, 72297237.
(15) Lu, Y.; Yu, L.; Wu, M.; Wang, Y.; Lou, X. W. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv. Mater. 2018, 30, 17028751702884.
(16) Li, G. M.; Chen, Y. Z.; Ouyang, Y.; Yao, D.; Lu, L.; Wang, L.; Xia, X.; Lei, W.; Chen, S. M.; Mandler, D.; Hao, Q. Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 2019, 469, 941950.
(17) Dan, Y. Y.; Sun, Y. Y.; Lu, C.; Feng, W. C.; Liu, G.; Cheng, X. F.; Chen, L. Z.; Cheng, K.; Muralidharan, G. Composite electrodeposited PbO2/Co3O4 on a Ti substrate as positive electrode materials for a hybrid supercapacitor. Chin. J. Struct. Chem. 2019, 38, 882892.
(18) Naqvi, T. K.; Srivastava, A. K.; Kulkarni, M. M.; Siddiqui, A. M.; Dwivedi, P. K. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci. 2019, 478, 887895.
(19) Wei, H. Z.; Wang, X. X.; Li, L.; Gong, Z. H.; Zhang, Y. F.; Jia, G. X. A first-principles study on the gas sensitivity of metal-loaded graphene with an atomic vacancy to O2. Chin. J. Struct. Chem. 2019, 2, 187194.
(20) Zhang, X. F.; Zhang, B. Y.; Liu, S. S.; Kang, H. W.; Kong, W. Q.; Zhang, S. R.; Shen, Y.; Yang, B. C. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation. Appl. Surf. Sci. 2018, 436, 974980.
(21) Ponnaiah, S. K.; Prakash, P.; Vellaichamy, B. A new analytical device incorporating a nitrogen doped lanthanum metal oxide with reduced graphene oxide sheets for paracetamol sensing. Ultrason. Sonochem. 2018, 44, 196203.
(22) Wang, H. J.; Zhan, S. Y.; Li, S. F.; Qu, J. Y. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminopheno. Talanta 2018, 178, 188194.
(23) Hummers, J. W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 13391339.
(24) Stobinsk, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. 2014, 195, 145154.
(25) Cho, S. H.; Jung, J. W.; Kim, C.; Kim, I. D. Rational design of 1-D Co3O4 nanofibers@ low content graphene composite anode for high performance Li-ion batteries. Sci. Rep. 2017, 7, 451059.
(26) Rivas-Murias, B.; Salgueiriño, V. Thermodynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals. J. Raman Spectrosc. 2017, 48, 837841.
(27) Heller, E. J.; Yang, Y.; Kocia, L.; Chen, W.; Fang, S.; Borunda, M.; Kaxiras, E. Theory of graphene Raman scattering. ACS Nano. 2016, 10, 28032818.
(28) Song, N. J.; Lu, C. X.; Chen, C. M.; Ma, C. L.; Kong, Q. Q. Effect of annealing temperature on the mechanical properties of flexible graphene films. New Carbon Mater. 2017, 32, 221226.
(29) Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 1928.
(30) Baccarin, M.; Santos, F.; Vicentini, F.; Zucolotto, V.; Janegitz, B.; Fatibello-Filho, O. Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J. Electroanal. Chem. 2017, 799, 436443.
(31) Ibáñez-Redín, G.; Wilson, D.; Gonçalves, D.; Oliveira, O. N. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J. Colloid Interf. Sci. 2018, 515, 101108.
|