Defect-induced Surface and Interface Reconstruction in Novel Two-dimensional Materials Revealed by Low Voltage Scanning Transmission Electron Microscopy
WANG Gang;GUO Zeng-Long;NIU Kang-Di;LIN Jun-Hao
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Defect-induced Surface and Interface Reconstruction in Novel Two-dimensional Materials Revealed by Low Voltage Scanning Transmission Electron Microscopy
WANG Gang;GUO Zeng-Long;NIU Kang-Di;LIN Jun-Hao
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
摘要Two-dimensional (2D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2D materials through aberration corrected low voltage scanning transmission electron microscopy (LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.
Abstract:Two-dimensional (2D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2D materials through aberration corrected low voltage scanning transmission electron microscopy (LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.
基金资助:The authors would like to acknowledge the support from National Natural Science Foundation of China (No. 11974156), Guangdong International Science Collaboration Project (No. 2019A050510001), and also the assistance of SUSTech Core Research Facilities, especially technical support from Pico-Centre that receives support from Presidential fund and Development and Reform Commission of Shenzhen
WANG Gang;GUO Zeng-Long;NIU Kang-Di;LIN Jun-Hao. Defect-induced Surface and Interface Reconstruction in Novel Two-dimensional Materials Revealed by Low Voltage Scanning Transmission Electron Microscopy[J]. 结构化学, 2020, 39(3): 401-414.
WANG Gang;GUO Zeng-Long;NIU Kang-Di;LIN Jun-Hao. Defect-induced Surface and Interface Reconstruction in Novel Two-dimensional Materials Revealed by Low Voltage Scanning Transmission Electron Microscopy. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 39(3): 401-414.
REFERENCES
(1) Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures, Nature 2013, 499, 419–425.
(2) Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials, Chem. Rev. 2013, 113, 3766–3798.
(3) Zhang, H. Ultrathin two-dimensional nanomaterials, ACS Nano 2015, 9, 9451–9469.
(4) Shi, Y.; Li, H.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques, Chem. Soc. Rev. 2015, 44, 2744–2756.
(5) Geng, D.; Yang, H. Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides, Adv. Mater. 2018, 30, 1800865.
(6) Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev. 2015, 44, 2702–2712.
(7) Mirõ, P.; Ghorbani-Asl, M.; Heine, T. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides, Angew. Chemie-Int. Ed. 2014, 53, 3015–3018.
(8) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors, Nat. Nanotechnol. 2011, 6, 147–150.
(9) Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 2014, 8, 1102–1120.
(10) Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and We2 nanosheets, Acc. Chem. Res. 2014, 47, 1067–1075.
(11) Tan, S. J. R.; Abdelwahab, I.; Chu, L.; Poh, S. M.; Liu, Y.; Lu, J.; Chen, W.; Loh, K. P. Quasi-monolayer black phosphorus with high mobility and air stability, Adv. Mater. 2018, 30, 1–8.
(12) Xia, F.; Wang, H.; Hwang, J. C. M.; Neto, A. H. C.; Yang, L. Black phosphorus and its isoelectronic materials, Nat. Rev. Phys. 2019, 1, 306–317.
(13) Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy, ACS Nano 2015, 9, 11249–11257.
(14) Keyshar, K.; Gong, Y.; Ye, G.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y.; Machado, L.; Kabbani, M.; Hart, A.; Li, B.; Galvao, D. S.; George A.; Vajtai, R.; Tiwary, C. S.; Ajayan, P. M. Chemical vapor deposition of monolayer rhenium disulfide (ReS2), Adv. Mater. 2015, 27, 4640–4648.
(15) Aivazian, G.; Gong, Z.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 2015, 11, 148–152.
(16) Zheng, L.; Zhou, J.; Shi, J.; Zeng, Q.; Chen, Y.; Niu, L.; Liu, F.; Yu, T.; Suenaga, K.; Liu, X.; Lin, J. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation, 2D Mater. 2018, 5, 25019.
(17) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 2013, 5, 263–275.
(18) Geim, A. K. Graphene: Status and prospects, Science 2009, 324, 1530-1534.
(19) Fang, A.; Kroenlein, K.; Riccardi, D.; Smolyanitsky, A. Highly mechanosensitive ion channels from graphene-embedded grown ethers, Nat. Mater. 2018, 18, 76-81.
(20) Gupta, A.; Rawal, T. B.; Neal, C. J.; Das, S.; Rahman, T. S.; Seal, S. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling, 2D Mater. 2017, 4, 25077.
(21) Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: corrosion-inhibiting coating, ACS Nano 2012, 6, 1102–1108.
(22) Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G. E.; Feng, Z.; Su, D.; More, K. L.; Wang, G.; Wang, Z.; Wu, G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells, Nat. Catal. 2018, 1, 935–945.
(23) Luo, Y.; Zhang, S.; Pan, H.; Xiao, S.; Guo, Z.; Tang, L.; Khan, U.; Ding, B. F.; Li, M.; Cai, Z.; Zhao, Y.; Lv, W.; Feng, Q.; Zou, X.; Lin, J.; Cheng, H. M.; Liu, B. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution, ACS Nano 2019, 14, 767-776.
(24) Lu, J. M.; Zheliuk, O.; Leermakers, I.; Yuan, N. F. Q.; Zeitler, U.; Law, K. T.; Ye, J. T. Evidence for two-dimensional ising superconductivity in gated MoS2, Science 2015, 350, 1353–1357.
(25) Chatterjee, U.; Zhao, J.; Iavarone, M.; Di Capua, R.; Castellan, J. P.; Karapetrov, G.; Malliakas, C. D.; Kanatzidis, M. G.; Claus, H.; Ruff, J.; Weber, F.; van Wezel, J.; Campuzano, J. C.; Osborn, R.; Randeria, M.; Trivedi, N.; Norman, M. R.; Rosenkranz, S. Emergence of coherence in the charge-density wave state of 2H-NbSe2, Nat. Commun. 2015, 6, 6313.
(26) Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave rrder in monolayer NbSe2, Nat. Nanotechnol. 2015, 10, 765–769.
(27) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-II Weyl semimetals, Nature 2015, 527, 495–498.
(28) Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 2013, 13, 2615–2622.
(29) Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials, Nat. Mater. 2019, 18, 541–549.
(30) Pennycook, S. J.; Nellist, P. D. Scanning transmission electron microscopy: imaging and analysis; Springer New York 2011.
(31) Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P.; Pantelides, S. T.; Pennycook, S. J. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 2010, 464, 571–574.
(32) Novoselov, K. S. Electric field effect in atomically thin carbon films, Science 2004, 306, 666–669.
(33) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 2009, 324, 1312–1314.
(34) Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; Wu, D.; Liu, F.; Fu, Q.; Zeng, Q.; Hsu, C. H.; Yang, C.; Lu, L.; Yu, T.; Shen, Z.; Lin, H.; Yakobson, B. I.; Liu, Q.; Suenaga, K.; Liu, G.; Liu, Z. A library of atomically thin metal chalcogenides, Nature 2018, 556, 355–359.
(35) Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides, 2D Mater. 2016, 3, 022002.
(36) Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater. 2013, 12, 554–561.
(37) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets, Nature 2007, 446, 60–63.
(38) Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes, Nano Lett. 2011, 11, 5148–5153.
(39) Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.;Terrones, H.; Terrones, M.; Tay, B. K.; Lou, J.; Pantelides, S. T.; Liu, Z.; Zhou, W.; Ajayan, P. M. Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nat. Mater. 2014, 13, 1135–1142.
(40) Dong, R.; Zhang, T.; Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges, Chem. Rev. 2018, 118, 6189–6235.
(41) Hong, J.; Jin, C.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis, Adv. Mater. 2017, 29, 1606434.
(42) Dan, J.; Zhao, X.; Pennycook, S. J. A machine perspective of atomic defects in scanning transmission electron microscopy, InfoMat 2019, 1, 359–375.
(43) Mendes, R. G.; Pang, J.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z.; Rümmeli, M. H. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures, ACS Nano 2019, 13, 978-995.
(44) Zhou, Y.; Song, E.; Zhou, J.; Lin, J.; Ma, R.; Wang, Y.; Qiu, W.; Shen, R.; Suenaga, K.; Liu, Q.; Wang, J.; Liu, Z.; Liu, J. Auto-optimizing hydrogen evolution catalytic activity of ReS2 through intrinsic charge engineering, ACS Nano 2018, 12, 4486–4493.
(45) Wang, S.; Robertson, A.; Warner, J. H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides, Chem. Soc. Rev. 2018, 47, 6764–6794.
(46) Susarla, S.; Hachtel, J. A.; Yang, X.; Kutana, A.; Apte, A.; Jin, Z.; Vajtai, R.; Idrobo, J. C.; Lou, J.; Yakobson, B. I.; Tiwary, C. S.; Ajayan, P. M. Thermally induced 2D alloy-heterostructure transformation in quaternary alloys, Adv. Mater. 2018, 30, 1–6.
(47) Yu, P.; Lin, J.; Sun, L.; Le, Q. L.; Yu, X.; Gao, G.; Hsu, C. H.; Wu, D.; Chang, T. R.; Zeng, Q.; Liu, F.; Wang, Q. J.; Jeng, H. T.; Lin, H.; Trampert, A.; Shen, Z.; Suenaga, K.; Liu, Z. Metal-semiconductor phase-transition in WSe2(1-x)Te2x monolayer, Adv. Mater. 2017, 29, 1–8.
(48) Li, P.; Cui, J.; Zhou, J.; Guo, D.; Zhao, Z.; Yi, J.; Fan, J.; Ji, Z.; Jing, X.; Qu, F.; Yang, C.; Lu, L.; Lin, J.; Liu, Z.; Liu, G. Phase transition and superconductivity enhancement in Se-substituted MoTe2 Thin Films, Adv. Mater. 2019, 31, 1–9.
(49) Lin, J.; Zhou, J.; Zuluaga, S.; Yu, P.; Gu, M.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Anisotropic ordering in 1T′ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium, ACS Nano 2018, 12, 894–901.
(50) Wen, W.; Lin, J.; Suenaga, K.; Guo, Y.; Zhu, Y.; Hsu, H. P.; Xie, L. Preferential S/Se occupation in an anisotropic ReS2(1-x)Se2x monolayer alloy, Nanoscale 2017, 9, 18275–18280.
(51) Shi, J.; Ma, D.; Han, G. F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y.; Lang, X. Y.; Zhang, Y.; Liu, Z. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction, ACS Nano 2014, 8, 10196–10204.
(52) Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 2007, 317, 100–102.
(53) Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction, Nano Lett. 2016, 16, 1097–1103.
(54) Lin, J.; Fang, W.; Zhou, W.; Lupini, A. R.; Idrobo, J. C.; Kong, J.; Pennycook, S. J.; Pantelides, S. T. AC/AB stacking boundaries in bilayer graphene, Nano Lett. 2013, 13, 3262–3268.
(55) Toh, C. T.; Zhang, H.; Lin, J.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z.; Abidi, I. H.; Sims, H.; Suenaga, K.; Pantelides, S. T.; Özyilmaz, B. Synthesis and properties of free-standing monolayer amorphous carbon, Nature 2020, 577, 199–203.
(56) Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H.; Chang, W. H.; Suenaga, K.; Li, L. J. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface, Science 2015, 349, 524–528.
(57) Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors, Nat. Mater. 2014, 13, 1096–1101.
(58) Lin, J.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K. I.; Cuong, N. T.; Otani, M.; Okada, S.; Lupini, A. R.; Idrobo, J. C.; Caudel, D.; Burger, A.; Ghimire, N.; Yan, J.; Mandrus, D. G.; Pennycook, S. J.; Pantelides, S. T. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers, Nat. Nanotechnol. 2014, 9, 436–442.
(59) Liu, X.; Xu, T.; Wu, X.; Zhang, Z.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R.; Sun, L. T.; Guo, W. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets, Nat. Commun. 2013, 4, 1–6.
(60) Brehm, J. A.; Lin, J.; Zhou, J.; Sims, H.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Electron-beam-induced synthesis of hexagonal 1H -MoSe2 from square β-FeSe decorated with Mo adatoms, Nano Lett. 2018, 18, 2016–2020.
(61) Lin, J.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 2017, 119, 1–6.
(62) Lin, J.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer, ACS Nano 2015, 9, 5189–5197.
(63) Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nano 2014, 9, 391–396.
(64) Lin, J.; Zhang, Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires, ACS Nano 2016, 10, 2782–2790.
(65) Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N.; Xiao, K.; Yoon, M.; Geohegan, D. B. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors, Nat. Commun. 2015, 6, 1–6.
(66) Zuluaga, S.; Lin, J.; Suenaga, K.; Pantelides, S. T. Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires, 2D Mater. 2018, 5, 035025.
(67) Cretu, O.; Komsa, H. P.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.; Suenaga, K.; Krasheninnikov, A. V. Experimental observation of boron nitride chains, ACS Nano 2014, 8, 11950–11957.
(68) Kibsgaard, J.; Tuxen, A.; Levisen, M.; Lægsgaard, E.; Gemming, S.; Seifert, G.; Lauritsen, J. V; Besenbacher, F. Atomic-scale structure of Mo6S6 nanowires, Nano Lett. 2008, 8, 3928–3931.
(69) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N. Assembling nanowires from Mo-S clusters and effects of iodine doping on electronic structure, Nano Lett. 2007, 7, 2214–2219.
(70) Meden, A.; Kodre, A. Atomic and electronic structure of Mo6S9-xIx nanowires, Nanotechnology 2005, 16, 1578–1583.
(71) Uplaznik, M.; Bercic, B.; Strle, J.; Ploscaru, M. I.; Dvorsek, D.; Kuar, P.; Devetak, M.; Vengust, D.; Podobnik, B.; Mihailovic, D. D. Conductivity of single Mo6S9-XIx molecular nanowire bundles, Nanotechnology 2006, 17, 5142–5146.
(72) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T. R.; Hsu, C. H.; Wu, D.; Jeng, H. T.; Huang, Y. Z.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Large-area and high-quality 2D transition metal telluride, Adv. Mater. 2017, 29, 1603471.
(73) Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials, Nature 2018, 563, 47–52.
1. (74) Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A. F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 2018, 17, 778–782.
(75) Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 2018, 13, 289–293.