REFERENCES
(1) Rosenberg, B.; Vancamp, L.; Trosko, J. E.; Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature 1969, 222, 385–386.
(2) Köberle, B.; Tomicic, M. T.; Usanova, S.; Kaina, B. Cisplatin resistance: preclinical findings and clinical implications. Bba-rev. Cancer 2010, 1806, 172–182.
(3) Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res. 2016, 106, 27–36.
(4) Kenny, R. G.; Marmion, C. J. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem. Rev. 2019, 119, 1058–1137.
(5) Banti, C. N.; Hadjikakou, S. K.; Sismanoglu, T.; Hadjiliadis, N. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J. Inorg. Biochem. 2019, 194, 114–152.
(6) Su, W.; Luo, Z. J.; Cui, H.; Tang, Z. F.; Li, P. Y.; Peng, B. H. Synthesis and cytotoxicity of the first arene ruthenium compound containing two thiosemicarbazone ligands. Chin. J. Struct. Chem. 2019, 38, 1543–1548.
(7) Hong, M.; Geng, H. L.; Niu, M. J.; Wang, F.; Li, D. C.; Liu, J. F.; Yin, H. D. Organotin(IV) complexes derived from Schiff base N΄-[(1E)-(2-hydroxy-3-methoxyphenyl)methylidene]pyridine-4-carbohydrazone: synthesis, in vitro cytotoxicities and DNA/BSA interaction. Eur. J. Med. Chem. 2014, 86, 550–561.
(8) Shang, X. M.; Meng, X. G.; Alegria, E. C. B. A.; Li, Q. S.; Guedes da Silva, M. F. C.; Kuznetsov, M. L.; Pombeiro, A. J. L. Syntheses, molecular structures, electrochemical behavior, theoretical study, and antitumor activities of organotin(IV) complexes containing 1-(4-chlorophenyl)-1-cyclopentanecarboxylato ligands. Inorg. Chem. 2011, 50, 8158–8167.
(9) Sirajuddin, M.; Ali, S.; McKee, V.; Akhtar, N.; Andleeb, S.; Wadood, A. Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin(IV) carboxylates. J. Photochem. Photobiol. B 2019, 197, 111516.
(10) Khan, A.; Parveen, S.; Khalid, A.; Shafi, S. Recent advancements in the anticancer potentials of phenylorganotin(IV) complexes. Inorg. Chim. Acta 2020, 505, 119464.
(11) Jiang, W. J.; Fan, S. J.; Zhou, Q.; Zhang, F. X.; Kuang, D. Z.; Tan, Y. X. Diversity of complexes based on p-nitrobenzoylhydrazide, benzoylformic acid and diorganotin halides or oxides self-assemble: cytotoxicity, the induction of apoptosis in cancer cells and DNA-binding properties. Bioorg. Chem. 2020, 94, 103402.
(12) Liu, J.; Li, Z. Q.; Yi, Y. Y.; Zhong, Y. X.; Yu, H. T.; Tan, Y. X.; Jiang, W. J. Syntheses, crystal structures and in vitro anticancer activity of four binuclear benzyltin complexes based on acylhydrazone ligand. Chin. J. Inorg. Chem. 2019, 35, 2200–2208.
(13) Yu, H. T.; Tan, Y. X.; Kuang, D. Z.; Zhang, F. X.; Jiang, W. J. Synthesis, structure and biological activity of diphenyltin complexes based on O,N,O-tridentate ligands. Inorg. Chim. Acta 2019, 496, 119044.
(14) Li, Y. X.; Yu, H. T.; Zeng, H. T.; Liu, M. Q.; Kuang, D. Z.; Tan, Y. X.; Jiang, W. J. Two new dibenzyltin complexes based on the 2-oxo-3-phenylpropionic acid arylformylhydrazone: syntheses, crystal structures and biological activity. Chin. J. Struct. Chem. 2019, 38, 1947–1955.
(15) Jiang, W. J.; Zhou, Q.; Liu, M. Q.; Zhang, F. X.; Kuang, D. Z.; Tan, Y. X. Microwave assisted synthesis of disubstituted benzyltin arylformylhydrazone complexes: anticancer activity and DNA-binding properties. Appl. Organomet. Chem. 2019, 33, e5092.
(16) Sheldrick, G. M. SHELXL-97, a Program for Crystal Structure Refinement. Germany Göttingen: University of Göttingen 1997.
(17) Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051–3058.
(18) Yan, C. Q.; Zhang, J. L.; Liang, T. G.; Li, Q. S. Diorganotin(IV) complexes with 4-nitro-N-phthaloyl-glycine: synthesis, characterization, antitumor activity and DNA-binding studies. Biomed. Pharmacother. 2015, 71, 119–127.
(19) Deacon, G. B.; Phillips, R. J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordin. Chem. Rev. 1980, 33, 227–250.
(20) Zhang, Z. J.; Zeng, H. T.; Liu, Y.; Kuang, D. Z.; Zhang, F. X.; Tan, Y. X.; Jiang, W. J. Synthesis, crystal structure and anticancer activity of the dibutyltin(IV)oxide complexes containing substituted salicylaldehyde-o-aminophenol Schiff base with appended donor functionality. Inorg. Nano-Met. Chem. 2018, 48, 486–494.
(21) Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Fourth ed. Berlin Heidelberg: Springer-Verlag 2009, 69–242.
(22) Luo, B.; Yu, H. T.; Liu, M. Q.; Zhang, F. X.; Kuang, D. Z.; Tan, Y. X.; Jiang, W. J. Syntheses, crystal structures and biological activity of dibenzyltin complexes base on the substituted benzoyl hydrazine-pyruvic acid. Chin. J. Inorg. Chem. 2019, 35, 1212–1220.
(23) Tan, Y. X.; Zhang, Z. J.; Feng, Y. L.; Yu, J. X.; Zhu, X. M.; Zhang, F. X.; Kuang, D. Z.; Jiang, W. J. Syntheses, crystal structures and biological activity of the 1D chain benzyltin complexes based on 2-oxo-propionic acid benzoyl hydrazone. J. Inorg. Organomet. P 2017, 27, 342–352.
(24) Tan, Y. X.; Zhang, Z. J.; Liu, Y.; Yu, J. X.; Zhu, X. M.; Kuang, D. Z.; Jiang, W. J. Synthesis, crystal structure and biological activity of the Schiff base organotin(IV) complexes based on salicylaldehyde-o-aminophenol. J. Mol. Struct. 2017, 1149, 874–881.
(25) Tian, L. J.; Chen, L. X.; An, W. G.; Liu, X. C. Diorganotin complexes of N-[4-(diethylamino)salicylidene]-(L)-tryptophane: syntheses, structures and properties. Chin. J. Struct. Chem. 2019, 38, 1977–1985.
(26) Liu, Y. Z.; Gao, H. Y.; Yi, X. G.; Li, D. P.; Li, Y. X. Crystal structures and DNA binding properties of 2-naphthoxyacetic acid Cu(II) complexes. Chin. J. Struct. Chem. 2019, 38, 1362–1369.
(27) Zhao, Y.; Li, Z.; Li, H. H.; Wang, S. N.; Niu, M. J. Synthesis, crystal structure, DNA binding and in vitro cytotoxicity studies of Zn(II) complexes derived from amino-alcohol Schiff-bases. Inorg. Chim. Acta 2018, 482, 136–143.
|