REFERENCES
(1) Peng, Y.; Zhao, Y.; Chen, M. Q.; Xia, F. Research advances in microfiber humidity sensors. Small 2018, 14, 180052420.
(2) Chen, Z.; Lu, C. Humidity sensors: a review of materials and mechanisms. Sens. Lett. 2005, 3, 274295.
(3) Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv. Mater. Interfaces 2018, 5, 180096919.
(4) Schubert, P. J.; Nevin, J. H. A polyimide-based capacitive humidity sensor. IEEE. T. Electron. Dev. 1985, 32, 12201223.
(5) Zhang, Y.; Yu, K.; Jiang, D.; Zhu, Z.; Geng, H.; Luo, L. Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 2005, 242, 212217.
(6) Sun, C.; Karthik, K.; Pramana, S. S.; Wong, L. H.; Zhang, J.; Yizhong, H.; Sow, C. H.; Mathews, N.; Mhaisalkar, S. G. The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C 2014, 2, 940945.
(7) Yeo, T.; Sun, T.; Grattan, K. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A: Phys. 2008, 144, 280295.
(8) Wu, Y.; Huang, Q.; Nie, J.; Liang, J.; Joshi, N.; Hayasaka, T.; Zhao, S.; Zhang, M.; Wang, X.; Lin, L. All-carbon based flexible humidity sensor. J. Nanosci. Nanotechno. 2019, 19, 53105316.
(9) Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 2014, 131, 397267.
(10) Khanna, V.; Nahar, R. Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities. J. Phys. D: Appl. Phys. 1986, 19, L141L145.
(11) Ying, J.; Wan, C.; He, P. Sol-gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B: Chem. 2000, 62, 165170.
(12) Yadav, B.; Shukla, R. Titania films deposited by thermal evaporation as humidity sensor. Insian J. Pure. Ap. Phy. 2003, 41, 681685.
(13) Mukode, S.; Futata, H. Semiconductive humidity sensor. Sens. Actuators 1989, 16, 111.
(14) Korotchenkov, G.; Brynzari, V.; Dmitriev, S. Electrical behavior of SnO2 thin films in humid atmosphere. Sens. Actuators B: Chem. 1999, 54, 197201.
(15) Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Humidity-sensing characteristics of divalent-metal-doped indium oxide thin films. J. Am. Ceram. Soc. 1998, 81, 321327.
(16) Arshak, K.; Twomey, K. Thin films of In2O3/SiO for humidity sensing applications. Sens. 2002, 2, 205218.
(17) Tsuchitani, S.; Sugawara, T.; Kinjo, N.; Ohara, S.; Tsunoda, T. A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 1988, 15, 375386.
(18) Sakai, Y.; Matsuguchi, M.; Yonesato, N. Humidity sensor based on alkali salts of poly (2-acrylamido-2-methylpropane sulfonic acid). Electrochim. Acta 2001, 46, 15091514.
(19) Li, Y.; Yang, M. Humidity sensitive properties of a novel soluble conjugated copolymer: Ethynylbenzene-co-propargyl alcohol. Sens. Actuators B: Chem. 2002, 85, 7378.
(20) Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 60706071.
(21) Feng, H.; Li, C.; Li, T.; Diao, F.; Xin, T.; Liu, B.; Wang, Y. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B: Chem. 2017, 243, 704714.
(22) Li, H.; Liu, B.; Cai, D.; Wang, Y.; Liu, Y.; Mei, L.; Wang, L.; Wang, D.; Li, Q.; Wang, T. High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. J. Mater. Chem. A 2014, 2, 68546862.
(23) Yang, Z.; Zhang, Z.; Liu, K.; Yuan, Q.; Dong, B. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications. J. Mater. Chem. C 2015, 3, 67016708.
(24) Parthibavarman, M.; Hariharan, V.; Sekar, C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng.: C 2011, 31, 840844.
(25) Guo, S.; Dong, S. Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 2011, 21, 1850318516.
(26) Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496500.
(27) Yu, H. W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J. M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate). ACS Appl. Mater. Inter. 2014, 6, 83208326.
(28) Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B: Chem. 2016, 225, 233240.
(29) Xu, J.; Gu, S.; Lu, B. Graphene and graphene oxide double decorated SnO2 nanofibers with enhanced humidity sensing performance. RSC Adv. 2015, 5, 7204672050.
(30) Ben, A. Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 1341026.
(31) Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C. H. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 2016, 105, 2332.
(32) Cai, J.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 2398723996.
(33) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 48064814.
(34) Ding, X.; Chen, X. D.; Yu, X. L.; Yu, X. A GOQD modified IDE-PQC humidity sensor based on impedance-frequency tuning principle with enhanced sensitivity. Sens. Actuators B: Chem. 2018, 276, 288295.
(35) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 13261330.
(36) Pokhrel, S.; Nagaraja, K. Electrical and humidity sensing properties of chromium(III) oxide-tungsten (VI) oxide composites. Sens. Actuators B: Chem. 2003, 92, 144150.
(37) Lin, W. D.; Liao, C. T.; Chang, T. C.; Chen, S. H.; Wu, R. J. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process. Sens. Actuators B: Chem. 2015, 209, 555561.
(38) Su, P. G.; Lin, Y. T. Low-humidity sensing properties of diamine-and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance. Sens. Actuators B: Chem. 2016, 238, 344350.
(39) Su, P. G.; Lu, Z. M. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sens. Actuators B: Chem. 2015, 211, 157163.
(40) Thakur, S.; Patil, P. Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators B: Chem. 2014, 194, 260268.
(41) Zhu, Y.; Chen, J.; Li, H.; Zhu, Y.; Xu, J. Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B: Chem. 2014, 193, 320325.
(42) Bai, Y.; Zhang, C. Z.; Chen, B.; Sun, H. Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sens. Actuators B: Chem. 2019, 287, 258266.
|