REFERENCES
(1) Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.
(2) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
(3) Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
(4) Tarascon, J. M. Key challenges in future Li-battery research. Philos. T. R. Soc. A 2010, 368, 3227–3241.
(5) Cao, W. Z.; Zhang, J. N.; Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020, 26, 46–55.
(6) Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
(7) Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Adv. Mater. 2018, 30, 1705702.
(8) Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem. 2015, 8, 2154–2175.
(9) Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
(10) Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape‐casting Li0. 34La0. 56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.
(11) Zheng, H. P.; Wu, S. P.; Tian, R.; Xu, Z. M.; Zhu, H.; Duan, H. N.; Liu, H. Z. Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 2020, 30, 1906189.
(12) Pogosova, M.; Krasnikova, I.; Sergeev, A.; Zhugayevych, A.; Stevenson, K. Correlating structure and transport properties in pristine and environmentally-aged superionic conductors based on Li1.3Al0.3Ti1.7(PO4)3 ceramics. J. Power Sources 2020, 448, 227367.
(13) Piana, G.; Bella, F.; Geobaldo, F.; Meligrana, G.; Gerbaldi, C. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 2019, 26, 100947.
(14) Cong, L. N.; Li, Y. N.; Lu, W.; Jie, J.; Liu, Y. L.; Sun, L. Q.; Xie, H. M. Unlocking the poly (vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. J. Power Sources 2020, 446, 227365.
(15) Sengwa, R. J.; Dhatarwal, P. Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim. Acta 2020, 338, 135890.
(16) Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.
(17) Hong, H.; Chen, L. Q.; Huang, X. J.; Xue, R. J. Studies on PAN-based lithium salt complex. Electrochim. Acta 1992, 37, 1671–1673.
(18) Shi, J.; Yang, Y. F.; Shao, H. X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membrane. Sci. 2018, 547, 1–10.
(19) Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K. Building better batteries in the solid state: a review. Materials (Basel, Switzerland) 2019, 12, 3892.
(20) Ratner, M. A.; Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 1988, 88, 109–124.
(21) Keller, M.; Varzi, A.; Passerini, S. Hybrid electrolytes for lithium metal batteries. J. Power Sources 2018, 392, 206–225.
(22) Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.
(23) Krawiec, W.; Scanlon Jr, L.; Fellner, J.; Vaia, R.; Vasudevan, S.; Giannelis, E. Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J. Power Sources 1995, 54, 310–315.
(24) Vignarooban, K; Dissanayake, M. L.; Albinsson, L; Mellander, B. E. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25–28.
(25) Liu, L. H.; Chu, L. H.; Jiang, B.; Li, M. C. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics 2019, 331, 89–95.
(26) Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.
(27) Shimonishi, Y.; Zhang, T.; Imanishi, N.; Im, D. M.; Lee, D.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N. A study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J. Power Sources 2011, 196, 5128–5132.
(28) Shen, Z. Y.; Zhang, W. D.; Zhu, G. N.; Huang, Y. Q.; Feng, Q.; Lu, Y. Y. Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries. Small Methods 2020, 4, 1900592.
(29) Weston, J.; Steele, B. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7, 75–79.
(30) Li, D.; Chen, L.; Wang, T. S.; Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Inter. 2018, 10, 7069–7078.
(31) Chen, L.; Liu, Y. C.; Fan, L. Z. Enhanced interface stability of polymer electrolytes using organic cage-type cucurbit [6] uril for lithium metal batteries. J. Electrochem. Soc. 2017, 164, A1834–A1840.
(32) Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143.
(33) Yan, C.; Xu, R.; Qin, J. L.; Yuan, H.; Xiao, Y.; Xu, L.; Huang, J. Q. 4.5 V High-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode. Angew. Chem. Int. Edit. 2019, 58, 15235–15238.
(34) Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J.; Yang, W. L.; Chu, Y.; Liu, Y. L.; Yu, H. G.; Yang, X. Q.; Huang, X. J.; Chen, L. Q.; Li, H. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.
(35) Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 2016, 55, 500–513.
(36) Zheng, F.; Kotobuki, M.; Song, S. F.; Lai, M. O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 19–213.
|