A First-principles Study on the Gas Sensitivity of Metal-loaded Graphene with an Atomic Vacancy to O2
卫河转;王晓霞;李磊;龚志华;章永凡;贾桂霄
a (School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China)
b (Department of Chemistry, Fuzhou University, Fuzhou 350108, China)
A First-principles Study on the Gas Sensitivity of Metal-loaded Graphene with an Atomic Vacancy to O2
a (School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China)
b (Department of Chemistry, Fuzhou University, Fuzhou 350108, China)
In this work, adsorption energies, geometrical and electronic structures for adsorption systems of O2 at metal-loaded graphene (M-Gra) and metal-loaded defective graphene (M-D-Gra) (M = Ni, Pd, Pt and Al) surfaces are studied using a GGA-PW91 method. Calculated results show that loaded M make the interaction between O2 and the graphene surface change from physical to chemical adsorptions, band gaps of M-Gra systems after the O2 adsorption change, and the Ni-loaded Gra has the highest sensitivity to O2. For O2-M-D-Gra systems, interactions between O2 and the M-D-Gra surfaces are chemical, similar to the O2-M-Gra systems, and loaded Pt and Al have the strongest effect on the sensitivity of D-Gra to O2. The M loads at the perfect Gra and D-Gra surfaces make the interactions between O2 and the surfaces have obvious charge transfer. This work would provide a valuable guidance on the gas sensitivity study of graphene to O2.
In this work, adsorption energies, geometrical and electronic structures for adsorption systems of O2 at metal-loaded graphene (M-Gra) and metal-loaded defective graphene (M-D-Gra) (M = Ni, Pd, Pt and Al) surfaces are studied using a GGA-PW91 method. Calculated results show that loaded M make the interaction between O2 and the graphene surface change from physical to chemical adsorptions, band gaps of M-Gra systems after the O2 adsorption change, and the Ni-loaded Gra has the highest sensitivity to O2. For O2-M-D-Gra systems, interactions between O2 and the M-D-Gra surfaces are chemical, similar to the O2-M-Gra systems, and loaded Pt and Al have the strongest effect on the sensitivity of D-Gra to O2. The M loads at the perfect Gra and D-Gra surfaces make the interactions between O2 and the surfaces have obvious charge transfer. This work would provide a valuable guidance on the gas sensitivity study of graphene to O2.
卫河转;王晓霞;李磊;龚志华;章永凡;贾桂霄. A First-principles Study on the Gas Sensitivity of Metal-loaded Graphene with an Atomic Vacancy to O2[J]. 结构化学, 2019, 38(2): 187-194.
WEI He-Zhuan;WANG Xiao-Xia;LI Lei;GONG Zhi-Hua;ZHANG Yong-Fan;JIA Gui-Xiao. A First-principles Study on the Gas Sensitivity of Metal-loaded Graphene with an Atomic Vacancy to O2. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38(2): 187-194.
REFERENCES
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubnos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
(2) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
(3) Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; De Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.
(4) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.
(5) Chen, J. H.; Masa, I.; Jang, C.; Hines, D. R.; Fuhrer, M. S.; Williams, E. D. Printed graphene circuits. Adv. Mater. 2007, 19, 3623–3627.
(6) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano. Lett. 2008, 8, 3498–3502.
(7) Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novose-lov, K. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.
(8) Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Molecular doping of graphene. Nano. Lett. 2008, 8, 173–177.
(9) Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 2008, 77, 125416–6.
(10) Ganji, M. D.; Sharifi, N.; Ardjmand, M.; Ahangari, M. G. Pt-decorated graphene as superior media for H2S adsorption: a first-principles study. Appl. Surf. Sci. 2012, 261, 697–704.
(11) Sun, Y. Y.; Li, C.; Zhang, F. W.; Li, D. Y.; Pan, H. Z.; Ye, J. First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Commun. 2010, 150, 1906–1910.
(12) Ma, L.; Zhang, J. M.; Xu, K. W.; Ji, V. A first-principles study on gas sensing properties of graphene and Pd-doped graphene. Appl. Surf. Sci. 2015, 343, 121–127.
(13) Hu, L. B.; Hu, X. R.; Wu, X. B.; Du, C. L.; Dai, Y. C.; Deng, J. B. Density functional calculation of transition metal adatom adsorption on graphene. Phys. B 2010, 405, 3337–3341.
(14) Tang, Y. N.; Ma, D. W.; Chen, W. G.; Dai, X. Q. Improving the adsorption behavior and reaction activity of Co-anchored graphene surface toward CO and O2 molecules. Sens. Actuators B 2015, 211, 227–234.
(15) Li, G. H.; Li, F.; Wang, X. P.; Zhao, M. W.; Liu, X. D. Gold atom and dimer adsorbed on perfect and defective graphene and boron nitride monolayer: a first-principles study. Phys. E 2014, 59, 235–242.
(16) Rad, A. S. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl. Surf. Sci. 2015, 357, 1217–1224.
(17) Rad, A. S.; Foukolaei, V. P. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synthetic Metals 2015, 210, 171–178.
(18) Zhou, M.; Lu, Y. H.; Cai, Y. Q.; Zhang, C.; Feng, Y. P. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 2011, 22, 385502/1–8.
(19) Wanno, B.; Tabtimsai, C. A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets. Superlattices Microstr. 2014, 67, 110–117.
(20) Gholami, S.; Rad, A. S.; Heydarinasab, A.; Ardjmand, M. Adsorption of adenine on the surface of nickel-decorated graphene: a DFT study. J. Alloys Compd. 2016, 686, 662–668.
(21) Lee, Y. B.; Lee, S. H.; Hwang, Y. B.; Chung, Y. C. Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2, O2, NO2, SO2). Appl. Surf. Sci. 2014, 289, 445–449.
(22) Liu, X. Y.; Zhang, J. M. Formaldehyde molecule adsorbed on doped graphene: a first-principles study. Appl. Surf. Sci. 2014, 293, 216–219.
(23) Okazaki-Maeda, K.; Morikawa, Y.; Tanaka, S.; Kohyama, M. Structures of Pt clusters on graphene by first-principles calculations. Surf. Sci. 2010, 604, 144–154.
(24) Cao, C.; Wu, M.; Jiang, J. Z.; Cheng, H. P. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 2010, 81, 205424–9.
(25) Manadé, M.; Vinnes, F.; Illas, F. Transition metal adatoms on graphene: a systematic density functional study. Carbon 2015, 95, 525–534.
(26) Li, F.; Xiao, C. Y.; Kan, E. J.; Lu, R. F.; Deng, K. M. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Phys. Sin. 2014, 63, 176802–6.
(27) Kang, B. T.; Ai, H. Q.; Lee, J. Y. Single-atom vacancy induced changes in electronic and magnetic properties of graphyne. Carbon 2017, 116, 113–119.
(28) Mi, C. T.; Liu, G. P.; Wang, J. J.; Guo, X. L.; Wu, S. X.; Yu, J. First-principles calculations of the adsorption of Au, Ag and Cu atoms on defected graphene. Acta Phys.-Chim. Sin. 2014, 30, 1230–1238.
(29) Jia, T. T.; Lu, C. H.; Ding, K. N.; Zhang, Y. F.; Chen, W. K. Oxidation of Pdn (n = 1~5) clusters on single vacancy graphene: a first-principles study. Comput. Theor. Chem. 2013, 1020, 91–99.
(30) Zhou, Q. X.; Fu, Z. B.; Tang, Y. J.; Zhang, H.; Wang, C. Y. Effects of various defects on the electronic properties of single-walled carbon nanotubes: a first principle study. Phys. E 2014, 60, 133–138.
(31) Dai, X. Q.; Li, Y. H.; Xie, M. H.; Hu, G. C.; Zhao, J. H.; Zhao, B. Structural stability and electronic, magnetic properties of Ge adsorption on defected graphene: a first-principles study. Phys. E 2011, 43, 1461–1464.
(32) Peyghan, A. A.; Rastegar, S. F.; Hadipour, N. L. DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys. Lett. A 2014, 378, 2184–2190.
(33) Kaniyoor, A.; Jafri, R. I.; Arockiadoss, T.; Ramaprabhu, S. Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 2009, 1, 382–386.
(34) Ao, Z. M.; Yang, J.; Li, S.; Jiang, Q. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett. 2008, 461, 276–279.
(35) Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125–9.
(36) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.
(37) Carlsson, J. M.; Scheffler, M. Structural, electronic, and chemical properties of nanoporous carbon. Phys. Rev. Lett. 2006, 96, 046806–4.
(38) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Effects of vacancy and boron doping on Si adsorption on graphene. Acta Phys. Chim. Sin. 2011, 27, 369–373.
(39) Li, X. First Principles Study of Graphene with Defects. Master Thesis, Xidian University 2011, p37.
(40) Tang, Y. N.; Liu, Z. Y.; Chen, W. G.; Shen, Z. G.; Li, C. G.; Dai, X. Q. Theoretical study on the removal of adsorbed sulfur on Pt anchored graphene surfaces. Int. J. Hydrogen Energy 2015, 40, 6942–6949.