A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis
易茗;赵儒霞;王敦球;肖瑜
Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis
YI Ming;ZHAO Ru-Xia;WANG Dun-Qiu;XIAO Yu
Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
A highly efficient fluorescence material dinuclear zinc polymer [Zn2(mhbd)2(dca)2]n (1, Hmhbd is 3-methoxy-2-hydroxybenzaldehyde, dca is N(CN)2‒) has been synthesized under room temperature and structurally characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The structure belongs to the triclinic system, space group P with a = 8.475(1), b = 9.595(1), c = 15.001(1) Å, α = 86.84(1), β = 81.10(1), γ = 68.78(1)°, Mr = 565.15, V = 1123.5(1) Å3, Dc = 1.671 g•cm–3, F(000) = 568, μ = 2.185 mm–1, R = 0.0451, and wR = 0.1297. 1 is a dinuclear zinc complex which further constructs a 1D chain through double μ1,5-dca bridge. Luminescent property and Hirshfeld surface analysis of 1 have been studied. The result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand.
A highly efficient fluorescence material dinuclear zinc polymer [Zn2(mhbd)2(dca)2]n (1, Hmhbd is 3-methoxy-2-hydroxybenzaldehyde, dca is N(CN)2‒) has been synthesized under room temperature and structurally characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The structure belongs to the triclinic system, space group P with a = 8.475(1), b = 9.595(1), c = 15.001(1) Å, α = 86.84(1), β = 81.10(1), γ = 68.78(1)°, Mr = 565.15, V = 1123.5(1) Å3, Dc = 1.671 g•cm–3, F(000) = 568, μ = 2.185 mm–1, R = 0.0451, and wR = 0.1297. 1 is a dinuclear zinc complex which further constructs a 1D chain through double μ1,5-dca bridge. Luminescent property and Hirshfeld surface analysis of 1 have been studied. The result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand.
This work was financially supported by the National Natural Science Foundation of China (Nos. 51638006 and 51569008) and the Natural Science Foundation of Guangxi Province (No. 2015GXNSFAA139240)
易茗;赵儒霞;王敦球;肖瑜. A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis[J]. 结构化学, 2018, 37(2): 312-321.
YI Ming;ZHAO Ru-Xia;WANG Dun-Qiu;XIAO Yu. A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(2): 312-321.
REFERENCES
(1)Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. B. A Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2005, 127, 8940–8941.
(2)Lee, E. Y.; Jang, S. Y.; Suh, M. P. Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2]. J. Am. Chem. Soc. 2005, 127, 6374–6381. (3)Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 2004, 126, 32–33.
(4)Ma, L. F.; Wang, L. Y.; Huo, X. K.; Wang, Y. Y.; Fan, Y. T.; Wang, J. G.; Chen, S. H. Chain, pillar, layer, and different pores: a N-[(3-carboxyphenyl)-sulfonyl]glycine ligand as a versatile building block for the construction of coordination polymers. Cryst. Growth Des. 2008, 8, 620–628.
(5)Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129.
(6)Zhang, S. H.; Zhao, R. X.; Li, G.; Zhang, H. Y.; Huang, Q. P.; Liang, F. P. Room temperature syntheses, crystal structures and properties of two new heterometallic polymers based on 3-ethoxy-2-hydroxybenzaldehyde ligand. J. Solid State Chem. 2014, 220, 206–212.
(7)Zhao, B.; Gao, H. L.; Chen, X. Y.; Cheng, P.; Shi, W.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. A promising MgII-ion-selective luminescent probe: structures and properties of Dy–Mn polymers with high symmetry. Chem. Eur. J. 2006, 12, 149–158.
(8)Min, K. S.; Suh, M. P. Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 2000, 122, 6834–6840.
(9)Wang, W.; Hai, H.; Zhang, S. H.; Yang, L.; Zhang, C. L.; Qin, X. Y. Microwave-assisted synthesis, crystal structure and magnetic behavior of a schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.
(10)Huang, Q. P.; Li, G.; Zhang, H. Y.; Zhang, S. H.; Li, H. P. Microwave-assisted synthesis, structure, and properties of a heptanuclear cobalt cluster with 2-ethyliminomethyl-6-methoxy-phenol. Z. Anorg. Allg. Chem. 2014, 640, 1403–1407.
(11)Yang, L.; Zhang, S. H.; Wang, W.; Guo, J. J.; Huang, Q. P.; Zhao, R. X.; Zhang, C. L.; Muller, G. Ligand induced diversification from tetranuclear to mononuclear compounds: syntheses, structures and magnetic properties. Polyhedron 2014, 74, 49–56.
(12)Huang, Q. P.; Zhang, S. H.; Zhang, H. Y.; Li, G.; Wu, M. C. Microwave-assisted synthesis, structure and properties of a nano-double-bowl-like heptanuclear nickel(II) cluster. J. Cluster Sci. 2014, 25, 1489–1499.
(13)Zhang, H. Y.; Li, Y.; Wang, W.; Zhang, X. Q.; Wang, J. M.; Zhang, S. H. Tetranuclear nickel(II) clusters: syntheses, crystal structures, magnetic properties and Hirshfeld surface analysis. J. Coord. Chem. 2016, 69, 1938–1948.
(14)Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982–986.
(15)Lee, S.; Kapustin, E.; Yaghi, O. M. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 2016, 353, 808–811.
(16)Zhang, S. H.; Wang, J. M.; Zhang, H. Y.; Fan, Y. P.; Xiao, Y. Highly efficient electrochemiluminescence based on 4-amino-1,2,4-triazole Schiff base two-dimensional Zn/Cd coordination polymers. Dalton Trans. 2017, 46, 410–419.
(17)Siman, P.; Trickett, C. A.; Furukawa, H.; Yaghi, O. M. L-aspartate links for stable sodium metal-organic frameworks. Chem. Commun. 2015, 51, 17463–17466.
(18)Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.
(19)Jiang, J.; Yaghi, O. M. Brønsted acidity in metal-organic frameworks. Chem. Rev. 2015, 115, 6966–6997.
(20)Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 7810–7816.
(21)Yang, L.; Guo, J. J.; Zhang, C. L.; Zhang, S. H. Syntheses, crystal structure, and properties of a new Co(II) coordination polymer constructed from 1,10–phenanthroline. Metal-Org. and Nano-Metal Chem. 2015, 45, 1112–1115.
(22)Zhang, S. H.; Li, G.; Zhang, H. Y.; Li, H. P. Microwave-assisted synthesis, structure and property of a spin-glass heptanuclear nickel cluster with 2-iminomethyl-6-methoxy-phenol. Z. Kristallogr. Cryst. Mater. 2015, 230, 479–484.
(23)Xiao, Y.; Huang, P.; Wang, W. Ligand structure induced diversification from dinuclear to 1D chain compounds: syntheses, structures and fluorescence properties. J. Cluster Sci. 2015, 26, 1091–1102.
(24)Yang, X. P.; Jones, R. A.; Wiester, M. J. A nanoscale slipped sandwich of Tb10-stabilization of a benzaldehyde methyl hemiacetyl. Dalton Trans. 2004, 1787–1788.
(25)Costes, J. P.; Vendier, L. Structural and magnetic studies of new NiII–LnIII complexes. Eur. J. Inorg. Chem. 2010, 2768–2773.
(26)Zhang, S. H.; Zhang, Y. D.; Zou, H. H.; Guo, J. J.; Li, H. P.; Song, Y.; Liang, H. A family of cubane cobalt and nickel clusters: syntheses, structures and magnetic properties. Inorg. Chim. Acta 2013, 396, 119–125.
(27)Zhang, S. H.; Li, N.; Ge, C. M.; Feng, C.; Ma, L. F. Structures and magnetism of {Ni2Na2}, {Ni4} and {Ni6IINiIII} 2-hydroxy-3-alkoxy- benzaldehyde clusters. Dalton Trans. 2011, 40, 3000–3007.
(28)Costes, J. P.; Dahan, F.; Nicodeme, F. A trinuclear gadolinium complex: structure and magnetic properties. Inorg. Chem. 2001, 40, 5285–5287.
(29)Chaudhari, A. K.; Joarder, B.; Rivière, E.; Rogez, G.; Ghosh, S. K. Nitrate-bridged “pseudo-double-propeller”-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties. Inorg. Chem. 2012, 51, 9159–9161.
(30)Lalia-Kantouri, M.; Papadopoulos, C. D.; Hatzidimitriou, A. G.; Skoulika, S. Hetero-heptanuclear (Fe-Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8•Νa5]•3OH•8H2Ο. Struct. Chem. 2009, 20, 177–184.
(31)Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
(32)Do, J. L.; Mottillo, C.; Tan, D.; Štrukil, V.; Friščić, T. Mechanochemical ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 2015, 137, 2476–2479.
(33)Karthikeyan, S.; Potisek, S.; Piermattei, A.; Sijbesma, R. P. Highly efficient mechanochemical scission of silver-carbene coordination polymers. J. Am. Chem. Soc. 2008, 130, 14968–14969.
(34)Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(II) cluster. J. Coord. Chem. 2014, 67, 3155–3166.
(35)Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557.
(36)Zhao, R. X.; Zhang, J. L.; Zhang, S. H.; Zhang, H. Y. Room temperature synthesis, crystal structure, and properties of a new heterometallic one-dimensional Cu–Na polymer. Synth. React. Inorg. Met.-Org. and Nano-Met. Chem. 2016, 46, 1462–1467.
(37)Zhou, K.; Chaemchuen, S.; Wu, Z. X.; Verpoort, F. Rapid room temperature synthesis forming pillared metal-organic frameworks with Kagomé net topology. Micropor. Mesopor. Mat. 2017, 239, 28–33.
(38)Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J. Room-temperature synthesis of manganese oxide monosheets. J. Am. Chem. Soc. 2008, 130, 15938–15943.
(39)Zhao, R. X.; Zhang, S. H.; Zhang, H. Y.; Li, G.; Ding, G. H.; Li, H. P. Room temperature synthesis, crystal structure and magnetic property of a two-dimensional copper(II) polymer bridged by end-on and end-to-end azide bridges. J. Cluster Sci. 2015, 26, 949–958.
(40)Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm. 2009, 11, 19–32.
(41)Zhang, H. Y.; Xiao, Y.; Zhu, Y. A novel copper(II) complex based on 4-Amino-1,2,4-triazole Schiff-base: synthesis, crystal structure, spectral characterization, and Hirshfeld surface analysis. Chin. J. Struct. Chem. 2017, 36, 848-855.
(42)Zhang, H. Y.; Wang, W.; Chen, H.; Zhang, S.-H.; Li, Y. Five novel dinuclear copper(II) complexes: crystal structures, properties, Hirshfeld surface analysis and vitro antitumor activity study. Inorg. Chim. Acta 2016, 453, 507-515.
(43)Luo, Y. H.; Zhang, C. G.; Xu, B.; Sun, B. W. A cocrystal strategy for the precipitation of liquid 2,3-dimethyl pyrazine with hydroxyl substituted benzoic acid and a Hirshfeld surfaces analysis of them. CrystEngComm. 2012, 14, 6860–6868.
(44)Seth, S. K.; Saha, I.; Estarellas, C.; Frontera, A.; Kar, T.; Mukhopadhyay, S. Supramolecular self-assembly of M-IDA complexes involving lone-pair•••π interactions: crystal structures, Hirshfeld surface analysis, and DFT calculations (H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)). Cryst. Growth Des. 2011, 11, 3250–3265.
(45)Feng, C.; Ma, Y. H.; Zhang, D.; Li, X. J.; Zhao, H. Highly efficient electrochemiluminescence based on pyrazolecarboxylic metal organic framework. Dalton Trans. 2016, 45, 5081–5091.
(46)Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
(47)Wolff, S.; Grimwood, D.; McKinnon, J.; Jayatilaka, D.; Spackman, M. Crystal explorer. University of Western Australia, Perth 2007, 377.
(48)Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 4, 378–392.
(49)Lo, W. K.; Wong, W. K.; Guo, J. P.; Wong, W. Y.; Li, K. F.; Cheah, K. W. Synthesis, structures and luminescent properties of new heterobimetallic Zn–4f schiff base complexes. Inorg. Chim. Acta 2004, 357, 4510–4521.
(50)Wang, J.; Lin, Z. J.; Ou, Y. C.; Yang, N. L.; Zhang, Y. H.; Tong, M. L. Hydrothermal synthesis, structures, and photoluminescent properties of benzenepentacarboxylate bridged networks incorporating Zinc(II)−hydroxide clusters or Zinc(II)−carboxylate layers. Inorg. Chem. 2008, 47, 190–199.
(51)Zhang, Y. D.; Zhang, S. H.; Ge, C. M.; Wang, Y. G.; Huang, Y. H.; Li, H. P. Synthesis and crystal structures of two heterobinuclear nickel polymers [NiNaL(dca)]n and [NiNaL(dca)]2n•(CH3COOCH3)n•(H2O)n. Synth. React. Inorg. Met.–Org. Nano–Met. Chem. 2013, 43, 990–994.
(52)Lin, H. H.; Mohanta, S.; Lee, C. J.; Wei, H. H. Syntheses, crystal engineering, and magnetic property of a dicyanamide bridged three-dimensional manganese(II)-nitronyl nitroxide coordination polymer derived from a new radical. Inorg. Chem. 2003, 42, 1584–1589.
(53)Zhang, S. H.; Feng, C. Microwave-assisted synthesis, crystal structure and fluorescence of novel coordination complexes with Schiff base ligands. J. Mol. Struct. 2010, 977, 62–66.
(54)van Albada, G. A.; Quiroz-Castro, M. E.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. The first structural evidence of a polymeric Cu(II) compound with a bridging dicyanamide anion: X-ray structure, spectroscopy and magnetism of catena-[polybis(2-aminopyrimidine)copper(II) bis(μ-dicyanamido)]. Inorg. Chim. Acta 2000, 298, 221–225.
(55)Bhaumik, P. K.; Harms, K.; Chattopadhyay, S. Synthesis and characterization of four dicyanamide bridged copper(II) complexes with N2O donor tridentate Schiff bases as blocking ligands. Inorg. Chim. Acta 2013, 405, 400–409.
(56)Ray, A.; Pilet, G.; Gómez–García, C. J.; Mitra, S. Designing dicyanamide bridged 1D molecular architecture from a mononuclear copper(II) Schiff base precursor: syntheses, structural variations and magnetic study. Polyhedron 2009, 28, 511–520.
(57)Shebl, M. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes. Spectrochim. Acta, Part A: Mol. and Biomol. Spectr. 2014, 117, 127–137.