Synthesis, Crystal Structure and Electronic Structure of Novel Semiconducting KCdAsS3
孙宝华;贺剑桥;卜克军;张弦;黄富强
a (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)
b (University of Chinese Academy of Sciences, Beijing 100049, China)
c (Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China)
Synthesis, Crystal Structure and Electronic Structure of Novel Semiconducting KCdAsS3
SUN Bao-Hua;HE Jian-Qiao;BU Ke-Jun;ZHANG Xian;HUANG Fu-Qiang
a (State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)
b (University of Chinese Academy of Sciences, Beijing 100049, China)
c (Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China)
A new compound of KCdAsS3 (Mr = 322.60) was successfully synthesized using thiourea reactive flux method. The crystal structure was determined by single-crystal X-ray diffraction. The title compound crystallizes in a monoclinic system of space group P21/n with a = 5.9537(7), b = 16.633(3), c = 6.093(1) Å, = 90.781(3), V = 610.0(1) Å3, Z = 4, Dc = 3.513 g/cm3, (MoKα) = 10.52 mm−1, F(000) = 592, R = 0.057 and wR = 0.136 for 899 observed reflections with I > 2σ(I). The crystal structure of KCdAsS3 features [CdAsS3] layers, which are separated by K+ ions. First-principles calculations show that KCdAsS3 is an indirect band gap semiconductor with a band gap of 2.3 eV. The novel layered compound of tetrahedra CdS4 and pyramids AsS3 is potentially useful for photoluminescent, photocatalytic and photoelectric applications.
A new compound of KCdAsS3 (Mr = 322.60) was successfully synthesized using thiourea reactive flux method. The crystal structure was determined by single-crystal X-ray diffraction. The title compound crystallizes in a monoclinic system of space group P21/n with a = 5.9537(7), b = 16.633(3), c = 6.093(1) Å, = 90.781(3), V = 610.0(1) Å3, Z = 4, Dc = 3.513 g/cm3, (MoKα) = 10.52 mm−1, F(000) = 592, R = 0.057 and wR = 0.136 for 899 observed reflections with I > 2σ(I). The crystal structure of KCdAsS3 features [CdAsS3] layers, which are separated by K+ ions. First-principles calculations show that KCdAsS3 is an indirect band gap semiconductor with a band gap of 2.3 eV. The novel layered compound of tetrahedra CdS4 and pyramids AsS3 is potentially useful for photoluminescent, photocatalytic and photoelectric applications.
Supported by the National Key Research and Development Program (No. 2016YFB0901600), Science and Technology Commission of Shanghai (No. 16JC1401700 and16ZR1440500) and NNSFC (Nos. 11404358 and 51402341)
REFERENCES
(1) Bera, T. K.; Kanatzidis, M. G. AEuAsS3 (A = Li, K, Rb, and Cs): new As3+ species from an arsenic-rich polysulfide flux. Inorg. Chem. 2008, 47, 70687070.
(2) Bera, T. K.; Song, J. H.; Freeman, A. J.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. Soluble direct-band-gap semiconductors LiAsS2 and NaAsS2: large electronic structure effects from weak As•••S interactions and strong nonlinear optical response. Angew. Chem. Int. Ed. 2008, 47, 78287832.
(3) Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 2008, 47, 755758.
(4) Wu, Y.; Bensch, W. K2Ln2As2Se9 (Ln = Sm, Gd): the first quaternary rare-earth selenoarsenate compounds with a 3D framework containing chairlike As2Se4 units. Inorg. Chem. 2009, 48, 27292731.
(5) Wu, Y.; Bensch, W. Syntheses, crystal structures and spectroscopic properties of KEu[AsS4], K3Dy[AsS4]2 and Rb4Nd0.67[AsS4]2. Solid State Sci. 2009, 11, 15421548.
(6) Morris, C. D.; Kanatzidis, M. G. Arsenic-containing chalcophosphate molecular anions. Inorg. Chem. 2010, 49, 90499054.
(7) Rothenberger, A.; Morris, C.; Kanatzidis, M. G. Synthesis of alkali metal indium thiophosphates containing the discrete anions [In(PS4)(PS5)2]6 and [In(PS4)2(PS5)]6. Inorg. Chem. 2010, 49, 55985602.
(8) Chung, I.; Biswas, K.; Song, J. H.; Androulakis, J.; Chondroudis, K.; Paraskevopoulos, K. M.; Freeman, A. J.; Kanatzidis, M. G. Rb4Sn5P4Se20: a semimetallic selenophosphate. Angew. Chem. Int. Ed. 2011, 50, 88348838.
(9) Chung, I.; Kanatzidis, M. G. Stabilization of Sn2+ in K10Sn3(P2Se6)4 and Cs2SnP2Se6 derived from a basic flux. Inorg. Chem. 2011, 50, 412414.
(10) Morris, C. D.; Malliakas, C. D.; Kanatzidis, M. G. Germanium selenophosphates: the incommensurately modulated 1/∞[Ge4xPxSe124] and the molecular [Ge2P2Se14]6. Inorg. Chem. 2011, 50, 1024110248.
(11) Löken, S.; Tremel, W. K2AuPS4, Tl2AuPS4, K2AuAsS, and KAu5P2S8: syntheses, structures, and properties of quaternary gold thiophosphate and thioarsenate compounds. Eur. J. Inorg.Chem. 1998, D-69451, 283289.
(12) Kwak, J. E.; Kim, C.; Yun, H.; Do, J. Synthesis and crystal structure of a new one-dimensional quaternary thiophosphate, CsNb2PS10. Bull. Korean Chem. Soc. 2007, 28, 701704.
(13) Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. 1/∞[ZrPSe6]: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 2008, 130, 1227012272.
(14) Bang, H.; Kim, Y.; Kim, S.; Kim, S. J. Dimensional reductions from 2-D Nb4P2S21 to 1-D ANb2PS10 (A = Na, K, Rb, Cs, Tl) and to 0-D Tl5[Nb2S4C18]Cl using halide molten salts. J. Solid State Chem. 2008, 181, 17981802.
(15) Banerjee, S.; Szarko, J. M.; Yuhas, B. D.; Malliakas, C. D.; Chen, L. X.; Kanatzidis, M. G. Room temperature light emission from the low-dimensional semiconductors AZrPS6 (A = K, Rb, Cs). J. Am. Chem. Soc. 2010, 132, 53485350.
(16) Yao, H. G.; Zhou, P.; Ji, S. H.; Zhang, R. C.; Ji, M.; An, Y. L.; Ning, G. L. Syntheses and characterization of a series of silver-thioantimonates(III) and thioarsenates(III) containing two types of silver-sulfur chains. Inorg. Chem. 2010, 49, 11861190.
(17) Yao, H. G.; Ji, M.; Ji, S. H.; An, Y. L. Synthesis, structure and characterization of two new copper(І)-thioarsenates(ІІІ) constructed by the [AsS3]3− and CuSx units. J. Solid State Chem. 2013, 198, 289294.
(18) Zhang, C.; Ji, M.; Ji, S. H.; An, Y. L. Mild solvothermal syntheses and characterization of layered copper thioantimonates(III) and thioarsenate(III). Inorg. Chem. 2014, 53, 48564860.
(19) Chondroudis, K.; Kanatzidis, M. G. Group 10 and group 12 one-dimensional selenodiphosphates: A2MP2Se6 (A = K, Rb, Cs; M = Pd, Zn, Cd, Hg). J. Solid State Chem. 1998, 138, 321328
(20) Jörgens, S.; Johrendt, D.; Mewis, A. Motifs of closest packings: the compounds Zn3(PS4)2 and LiZnPS4. Z. Anorg. Allg. Chem. 2002, 628, 17651769.
(21) Iyer, R. G.; Kanatzidis, M. G. [Mn2(AsS4)4]8 and [Cd2(AsS4)2(AsS5)2]8: discrete clusters with high negative charge from alkali metal polythioarsenate fluxes. Inorg. Chem. 2004, 43, 36563662.
(22) Vater, V.; Sheldrick, W. S. Solventothermal synthesis and structure of the polymerie thioarsenates(III) (Et4N)2As6S10 and (Et4N)2As8S13. Z. Naturforsch. B 1998, 53, 12591264.
(23) Hanko, J. A.; Sayettat, J.; Jobic, S.; Brec, R.; Kanatzidis, M. G. A2CuP3S9 (A = K, Rb), Cs2Cu2P2S6, and K3CuP2S7: new phases from the dissolution of copper in molten polythiophosphate fluxes. Chem. Mater. 1998,10, 30403049.
(24) Pertlik, F. Hydrothermal synthesis and crystal structure determination of heptasilver(I)-disulfur-tetrathioarsenate(V), Ag7S2(AsS4), with a survey on thioarsenate Anion. J. Solid State Chem. 1994, 112, 170175.
(25) Iyer, R. G.; Kanatzidis, M. G. Controlling Lewis basicity in polythioarsenate fluxes: stabilization of KSnAsS5 and K2SnAs2S6. Extended chains and slabs based on pyramidal β-[AsS4]3 and [AsS3]3 units. Inorg. Chem. 2002, 41, 36053607.
(26) Iyer, R. G.; Do, J.; Kanatzidis, M. G. Flux synthesis of the noncentrosymmetric cluster compounds Cs2SnAs2Q9 (Q = S, Se) containing two different polychalcoarsenite β-[AsQ4]3 and [AsQ5]3 ligands. Inorg. Chem. 2003, 42, 14751482.
(27) CrystalClear, Version 1.3.5; Rigaku Corp.: The Woodlands, TX 1999.
(28) Francart, T.; van Wieringen, A.; Wouters, J. APEX 3: a multi-purpose test platform for auditory psychophysical experiments, J. Neurosci. Methods 2008, 172, 283293.
(29) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 1795317979.
(30) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1116911186.
(31) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 38653868.
(32) Brown, K. L.; Dickson, F. W. The crystal structure of synthetic christite, HgTlAsS3. Z. Kristallogr. 2010, 144, 367376.
(33) Wu, Y.; Bensch, W. Synthesis, crystal structures, and optical properties of NaCdPnS3 (Pn = As, Sb). J. Alloys Compd. 2012, 511, 3540.
(34) Sommer, V. H.; Hoppe, R. On ternary sulphides of the alkali metals with arsenic and antimony. Z. Anorg. Allg. Chem. 1977, 430, 199210.
(35) Zhao, W.; Liu, Y. F.; Liu, J. J.; Chen, P.; Chen, I. W.; Huang, F. Q.; Lin, J. H. Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. J. Mater. Chem. A 2013, 1, 79427948.
(36) Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal., B 2006, 68, 125129.