New Efficient Copper(II)-catalyzed Direct Access to Primary Amide from Aldehyde under Solvothermal Condition and Related Crystal Structure Study
陈鸿;刘明国
a (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064,China)
b (Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China)
New Efficient Copper(II)-catalyzed Direct Access to Primary Amide from Aldehyde under Solvothermal Condition and Related Crystal Structure Study
CHEN Hong;LIU Ming-Guo
a (Key Laboratory of Radiation Physics and Technology of Ministry of Education,Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China)
b (Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China)
Two 1-methyl-1H-benzo[d]imidazole derivatives, C18H14CuN4O4•C4H8O2 (1) and C9H9N3O (2), have been synthesized and characterized by NMR, MS, FT-IR, elementary analysis and X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic, space group P21/n with a = 9.6888(3), b = 7.3772(2), c = 14.3277(4) Å, β = 95.819(3)o, V = 1018.81(5) Å3, Mr = 501.98, Z = 2, Dc = 1.636 g/cm3, F(000) = 518, μ = 1.123 mm−1, MoKα radiation (λ = 0.71073 Å), the final R = 0.0325 and wR = 0.0859 for 1821 observed reflections with I > 2σ(I). Compound 2 crystallizes in monoclinic, space group C2/c with a = 14.2908(14), b = 14.4268(13), c = 8.4802(6) Å, β = 108.513(9)o, V = 1657.9(3) Å3, Mr = 175.19, Z = 8, Dc = 1.404 g/cm3, F(000) = 736, μ = 0.097 mm−1, MoKα radiation (λ = 0.71073 Å), the final R = 0.0563 and wR = 0.1531 for 1231 observed reflections with I > 2σ(I). Intermolecular (N−H•••N, N−H•••O) and intramolecular (N−H•••N, C−H•••O) hydrogen bonds, as well as C−H•••π and π-π stacking interactions, help to stabilize the crystal structure of compound 2.
Abstract:Two 1-methyl-1H-benzo[d]imidazole derivatives, C18H14CuN4O4•C4H8O2 (1) and C9H9N3O (2), have been synthesized and characterized by NMR, MS, FT-IR, elementary analysis and X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic, space group P21/n with a = 9.6888(3), b = 7.3772(2), c = 14.3277(4) Å, β = 95.819(3)o, V = 1018.81(5) Å3, Mr = 501.98, Z = 2, Dc = 1.636 g/cm3, F(000) = 518, μ = 1.123 mm−1, MoKα radiation (λ = 0.71073 Å), the final R = 0.0325 and wR = 0.0859 for 1821 observed reflections with I > 2σ(I). Compound 2 crystallizes in monoclinic, space group C2/c with a = 14.2908(14), b = 14.4268(13), c = 8.4802(6) Å, β = 108.513(9)o, V = 1657.9(3) Å3, Mr = 175.19, Z = 8, Dc = 1.404 g/cm3, F(000) = 736, μ = 0.097 mm−1, MoKα radiation (λ = 0.71073 Å), the final R = 0.0563 and wR = 0.1531 for 1231 observed reflections with I > 2σ(I). Intermolecular (N−H•••N, N−H•••O) and intramolecular (N−H•••N, C−H•••O) hydrogen bonds, as well as C−H•••π and π-π stacking interactions, help to stabilize the crystal structure of compound 2.
Supported by the National Natural Science Foundation of China (No. 31370373 and 21102084) and Natural Science Foundation of Hubei Province (No. 2012FKC14401).
通讯作者:
mgliu1966@163.com
E-mail: mgliu1966@163.com
引用本文:
陈鸿;刘明国. New Efficient Copper(II)-catalyzed Direct Access to Primary Amide from Aldehyde under Solvothermal Condition and Related Crystal Structure Study[J]. 结构化学, 2016, 35(5): 796-804.
CHEN Hong;LIU Ming-Guo. New Efficient Copper(II)-catalyzed Direct Access to Primary Amide from Aldehyde under Solvothermal Condition and Related Crystal Structure Study. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35(5): 796-804.
REFERENCES
(1) (a) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY 1960; (b) Chen, X. M.; Tong, M. L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 2007, 40, 162–170.
(2) (a) Constable, E. C. Metals and Ligand Reactivity. VCH: Weinheim 1996, pp 245–262; (b) Burgess, J.; Hubbard, C. D. Ligand substitution reactions. Adv. Inorg. Chem. 2003, 54, 71–155; (c) Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses. Coord. Chem. Rev. 2005, 249, 1201–1219; (d) Evans, O. R.; Lin, W. B. Crystal engineering of NLO materials based on metal-organic coordination networks. Acc. Chem. Res. 2002, 35, 511–522.
(3) Spiess, H. W. Overview of NMR of Bulk Polymers. NMR Spectroscopy of Polymers: Innovative Strategies for Complex Macromolecules; ACS Symposium Series; American Chemical Society: Washington, DC 2011; Chapter 2, pp 17–18.
(4) Loudon, M. G. Organic Chemistry. Oxford University Press: New York, NY 2002, pp. 982–983.
(5) For reviews of amide formation, see: (a) Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631; (b) Montalbetti, C.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827–10852.
(6) Sheldon, R. A. Consider the environmental quotient. Chemtech. 1994, 24, 38–47.
(7) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L. Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Key green chemistry research areas — a perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411–420.
(8) Field, L.; Hughmark, P. B.; Shumaker, S. H.; Marshall, W. S. Isomerization of aldoximes to amides under substantially neutral conditions. J. Am. Chem. Soc. 1961, 83, 1983–1987.
(9) (a) Fujiwara, H.; Ogasawara, Y.; Yamaguchi, K.; Mizuno, N. A one-pot synthesis of primary amides from aldoximes or aldehydes in water in the presence of a supported rhodium catalyst. Angew. Chem., Int. Ed. 2007, 46, 5202–5205; (b) Kim, M.; Lee, J.; Lee, H. Y.; Chang, S. Significant self-acceleration effects of nitrile additives in the rhodium-catalyzed conversion of aldoximes to amides: a new mechanistic aspect. Adv. Synth. Catal. 2009, 351, 1807–1812; (c) Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Yamaguchi, K.; Mizuno, N. A supported rhodium hydroxide catalyst: preparation, characterization, and scope of the synthesis of primary amides from aldoximes or aldehydes. Chem. Asian J. 2008, 3, 1715–1721.
(10) Owston, N. A.; Parker, A. J.; Williams, J. M. Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org. Lett. 2007, 9, 3599–3601.
(11) Owston, N. A.; Parker, A. J.; Williams, J. M. Iridium-catalyzed conversion of alcohols into amides via oximes. Org. Lett. 2007, 9, 73–75.
(12) Mishra, A.; Ali, A.; Upreti, S.; Gupta, R. Cobalt coordinationinduced functionalized molecular clefts: isolation of {CoIII−ZnII} heterometallic complexes and their applications in beckmann rearrangement reactions. Inorg. Chem. 2008, 47, 154–161.
(13) Ramon, R. S.; Bosson, J.; Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Au/Ag-cocatalyzed aldoximes to amides rearrangement under solvent- and acid-free conditions. J. Org. Chem. 2010, 75, 1197–1202.
(14) Ali, M. A.; Punniyamurthy, T. Palladium-catalyzed one-pot conversion of aldehydes to amides. Adv. Synth. Catal. 2010, 352, 288–292.
(15) Brandenburg, K. DIAMOND, Version 3.2i; Crystal Impact GbR: Bonn, Germany.
(16) Valdez-Padilla, D.; Rodríguez-Morales, S.; Hernández-Campos, A.; Hernández-Luis, F.; Yépez-Mulia, L.; Tapia-Contreras, A.; Castillo R. Synthesis and antiprotozoal activity of novel 1-methylbenzimidazole derivatives. Bioorg. Med. Chem. 2009, 17, 1724–1730.
(17) Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany 1996.
(18) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K. Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
(19) (a) Sheldrick, G. M. SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen: Germany 1997; (b) Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen: Germany 1997.
(20) (a) Chen, Y. M.; Li, L.; Chen, Z.; Liu, Y. L.; Hu, H. L.; Chen, W. Q.; Liu, W.; Li, Y. H.; Lei, T.; Cao, Y. Y.; Kang, Z. H.; Lin, M. S.; Li, W. Metal-mediated controllable creation of secondary-, tertiary- and quaternary-carbon centers: a powerful strategy for synthesis of iron, cobalt and copper complexes with in situ generated substituted 1-pyridineimidazo-[1,5-a]pyridine ligands. Inorg. Chem. 2012, 51, 9705–9713; (b) Ganguly, N. C.; Roy, S.; Monda, P. An efficient copper(II)-catalyzed direct access to primary amides from aldehydes under neat conditions. Tetra. Lett. 2012, 53, 1413–1416.
(21) (a) Ramesh, K.; Murthy, S. N.; Karnakar, K.; Reddy, K. H. V.; Nageswar, Y. V. D.; Vijay, M.; Devi, B. L. A.; Prasad, R. B. N. A mild and expeditious synthesis of amides from aldehydes using bioglycerol-based carbon as a recyclable catalyst. Tetra. Lett. 2012, 53, 2636–2638; (b) Martínez-Asencio, A.; Yus, M.; Ramon, D. J. Copper(II) acetate-catalyzed one-pot conversion of aldehydes into primary amides through a Beckmann-type rearrangement. Tetrahedron 2012, 68, 3948–3951; (c) Sharma, S. K.; Bishopp, S. D.; Allen, C. L.; Lawrence, R.; Bamford, M. J.; Lapkin, A. A.; Plucinski, P.; Watson, R. J.; Williams, J. M. Copper-catalyzed rearrangement of oximes into primary amides. Tetra. Lett. 2011, 52, 4252–4255.
(22) Allen, C. L.; Davulcu, S.; Williams, J. M. J. Catalytic acylation of amines with aldehydes or aldoximes. Org. Lett. 2010, 12, 5096–5099.
(23) Lee, J.; Kim, M.; Chang, S.; Lee, H. Y. Anhydrous hydration of nitriles to amides using aldoximes as the water source. Org. Lett. 2009, 11, 5598–5601.
(24) (a) Yang, Z. W.; Aygul, N.; Liu, X. R.; Zhao, S. S.; Zhao, W. Q.; Yang, S. L. Structure of copper chelate of 2-hydroxy-4-methylthiobutanoic acid as trace mineral additive in animal feeding. Chin. J. Struct. Chem. 2015, 34, 147–153; (b) Wu, N. N.; Chen, C. N.; Huang, D. G. Activation of nitromethane to cyanide by a mononuclear Cu(II) complex. Chin. J. Struct. Chem. 2014, 33, 1643–1648; (c) Luo, T. T.; Hsu, L. Y.; Su, C. C.; Ueng, C. H.; Tsai, T. C.; Lu, K. L. Deliberate design of a 3D homochiral CuII/L-met/AgI coordination network based on the distinct soft-hard recognition principle. Inorg. Chem. 2007, 46, 1532–1534; (d) Ou, C. C.; Powers, D. A.; Thich, J. A.; Felthouse, T. R.; Hendrickson, D. N.; Potenza, J. A.; Schugar, H. J. Molecular structure and magnetic properties of trans-bis(L-methioninato)copper(II), Cu(C5H10NO2S)2. Inorg. Chem. 1978, 17, 34–40; (e) Veidis, M. V.; Palenik, G. J. The structure of a copper complex of an essential sulphur-containing amino-acid: bis(methioninato)copper(II). J. Chem. Soc. D 1969, 1277–1278.
(25) (a) Chen, X. M.; Cai, J. W. The Single Crystal Structure Analysis Principles and Practice. 2rd Ed. Science Press: China 2007; (b) Glusker, J. P.; Lewis, M.; Rossi, M. Crystal Structure Analysis for Chemists and Biologists. New York: VCH Publisher Inc. 1995, 406–407; (c) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and coordination complexes of the d- and f-block metals. J. Chem. Soc. Dalton Trans. II 1989, S1–S83.
(26) Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 3885–3896.