Solvothermal Syntheses and Characterizations of Two New Sliver Selenidoantimonates of Ag3SbSe3 and Ag5SbSe4
岳呈阳;张慧苹;陆欣秀;白轶群;石昊;徐鑫
Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandon 273155, China
Solvothermal Syntheses and Characterizations of Two New Sliver Selenidoantimonates of Ag3SbSe3 and Ag5SbSe4
Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandon 273155, China
Two new sliver selenidoantimonates, namely, Ag3SbSe3 and Ag5SbSe4, were prepared under mid solvothermal conditions and structurally characterized by single-crystal X-ray diffraction studies. Ag3SbSe3 crystallizes in the orthorhombic space group Pnma (No. 62) with a = 8.2414(12), b = 11.4925(17), c = 21.220(3) Å, V = 2009.8(5) Å3 and Z = 12. Its structure belongs to the β-Ag3AsSe3 type and features a 3D complex network composed of distorted trigonal planar AgSe3 and tetrahedral AgSe4 units as well as SbSe3 trigonal pyramids. Ag5SbSe4 crystallizes in the orthorhombic system, nocentrosymmetric space group Cmc21 (No. 36) with a = 8.1148(6), b = 12.9829(10), c = 8.7017(7) Å, V = 916.76(12) Å3 and Z = 4. Its structure adopts the Ag5SbS4 type and features a 3D framework based on trigonal planar AgSe3 units and SbSe3 trigonal pyramids. The results of optical absorption spectra and band structure calculations indicate that the title compounds are narrow band-gap semiconductors.
Two new sliver selenidoantimonates, namely, Ag3SbSe3 and Ag5SbSe4, were prepared under mid solvothermal conditions and structurally characterized by single-crystal X-ray diffraction studies. Ag3SbSe3 crystallizes in the orthorhombic space group Pnma (No. 62) with a = 8.2414(12), b = 11.4925(17), c = 21.220(3) Å, V = 2009.8(5) Å3 and Z = 12. Its structure belongs to the β-Ag3AsSe3 type and features a 3D complex network composed of distorted trigonal planar AgSe3 and tetrahedral AgSe4 units as well as SbSe3 trigonal pyramids. Ag5SbSe4 crystallizes in the orthorhombic system, nocentrosymmetric space group Cmc21 (No. 36) with a = 8.1148(6), b = 12.9829(10), c = 8.7017(7) Å, V = 916.76(12) Å3 and Z = 4. Its structure adopts the Ag5SbS4 type and features a 3D framework based on trigonal planar AgSe3 units and SbSe3 trigonal pyramids. The results of optical absorption spectra and band structure calculations indicate that the title compounds are narrow band-gap semiconductors.
This work was supported by the National Natural Science Foundation of China (Nos. 21201081 and 21571081) and State Key Laboratory of Structural Chemistry (No. 20150005)
岳呈阳;张慧苹;陆欣秀;白轶群;石昊;徐鑫 . Solvothermal Syntheses and Characterizations of Two New Sliver Selenidoantimonates of Ag3SbSe3 and Ag5SbSe4[J]. 结构化学, 2016, 35(2): 227-236.
YUE Cheng-Yang;ZHANG Hui-Ping;LU Xin-Xiu;BAI Yi-Qun;SHI Hao;XU Xin . Solvothermal Syntheses and Characterizations of Two New Sliver Selenidoantimonates of Ag3SbSe3 and Ag5SbSe4. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35(2): 227-236.
REFERENCES
(1) Zhang, Y.; Ke, X. Z.; Chen, C. F.; Yang, J.; Kent, P. R. C. Thermodynamic properties of PbTe, PbSe, and PbS: first-principles study. Physical Review B 2009, 80, 024304–024307.
(2) Yue, C. Y.; Lei, X. W.; Ma, Y. X.; Sheng, N.; Yang, Y. D.; Liu, G. D.; Zhai, X. R. [TM(en)3][SnSb4S9] (TM = Ni, Co): 3D chiral framework of mixed main-group metals and [Mn(dien)2]2Sb4S9: 1D chains with mixed-valent Sb centers. Cryst. Growth Des. 2014, 14, 101−109.
(3) Ovsyannikov, S. V.; Shchennikov, V. V. High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics. Chem. Mater. 2010, 22, 635–647.
(4) Kovalenko, M. V.; Spokoyny, B.; Lee, J. S.; Scheele, M.; Weber, A.; Perera, S.; Landry, D.; Talapin, D. V. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J. Am. Chem. Soc. 2010, 132, 6686–6695.
(5) Kastbjerg, S.; Bindzus, N.; Søndergaard, M.; Johnsen, S.; Lock, N.; Christensen, M.; Takata, M.; Spackman, M. A.; Iversen, B. B. Direct evidence of cation disorder in thermoelectric lead chalcogenides PbTe and PbS. Adv. Funct. Mater. 2013, 23, 5477–5483.
(6) May, A. F.; Fleurial, J. P.; Snyder, G. J. Optimizing thermoelectric efficiency in La3−xTe4 via Yb substitution. Chem. Mater. 2010, 22, 2995–2999.
(7) Lei, X. W.; Yue, C. Y.; Zhao, J. Q. ; Han, Y. F.; Yang, J. T.; Meng, R. R.; Gao, C. S.; Ding, H.; Wang, C. Y.; Chen, W. D.; Hong, M. C. Two types of 2D layered iodoargentates based on trimeric [Ag3I7] secondary building units and hexameric [Ag6I12] ternary building units: syntheses, crystal structures, and efficient visible light responding photocatalytic properties. Inorg. Chem. 2015, 54, 10593−10603.
(8) Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.
(9) Zhao, H. J.; Li, L. H.; Wu, L. M.; Chen, L. Syntheses, crystal and electronic structures, and physical properties of quaternary semiconductors: Ln2Mn3Sb4S12 (Ln = Pr, Nd, Sm, Gd). L. Inorg. Chem. 2010, 49, 5811–5817.
(10) Stähler, R.; Bensch, W. Solvothermal synthesis and crystal structure of the new layered thioantimonate(III) [Ni(C4H13N3)2]9Sb22S42•0.5H2O: interconnection of the SbS3, SbS4, and SbS5 primary building units yielding the very large Sb30S30 heteroring. Z. Anorg. Allg. Chem. 2002, 628, 1657–1662.
(11) Du, B. L.; Li, H.; Xu, J. J.; Tang, X. F.; Uher, C. Enhanced figure-of-merit in Se-doped p-type AgSbTe2 thermoelectric compound. C. Chem. Mater. 2010, 22, 5521–5527.
(12) Yue, C. Y.; Yuan, Z. D.; Zhang, L. G.; Wang, Y. B.; Liu, G. D.; Gong, L. K.; Lei, X. W. Synthesis, crystalstructureandpropertiesof[(dien)2Mn]Ge2S4 with mixed-valent Ge centers. J. Solid State Chem. 2013, 206, 129–133.
(13) Chung, M. Y.; Lee, C. S. Multinary selenides with unusual coordination environment of bismuth. Inorg. Chem. 2012, 51, 13328–13333.
(14) Yue, C. Y.; Lei, X. W.; Yin, L.; Zhai, X. R.; Ba, Z. R.; Niu, Y. Q.; Li, Y. P. [Mn(dien)2]MnSnS4, [Mn(1,2-dap)]2Sn2S6 and [Mn(en)2]MnGeS4: from 1D anionic and neutral chains to 3D neutral frameworks. CrystEngComm. 2015, 17, 814–823.
(15) Yue, C. Y.; Lei, X. W.; Feng, L. J.; Wang, C.; Gong, Y. P.; Liu, X. Y. [Mn2Ga4Sn4S20]8− T3 supertetrahedral nanocluster directed by a series of transition metal complexes. Dalton Trans. 2015, 44, 2416–2424.
(16) Yao, H. G.; Ji, M.; Ji, S. H.; Zhang, R. C.; An, Y. L.; Ning, G. L. Solvothermal syntheses of two novel layered quaternary silver-antimony(III) sulfides with different strategies. Crystal Growth & Design 2009, 9, 3821–3824.
(17) Yue, C. Y.; Lei, X. W.; Zang, H. P.; Zhai, X. R.; Feng, L. J.; Zhao, Z. F.; Zhao, J. Q.; Liu, X. Y. Two manganese-amine complexes incorporating thioantimonates and exhibiting diversiform roles of amine ligands. CrystEngComm. 2014, 16, 3424–3430.
(18) Vaqueiro, P.; Chippindale, A. M.; Cowley, A. R.; Powell, A. V. Templated synthesis of the novel layered silver-antimony sulfides [H3NCH2CH2NH2][Ag2SbS3] and [H3NCH2CH2NH2]2[Ag5Sb3S8]. Inorg. Chem. 2003, 42, 7846–7851.
(19) Powell, A. V.; Thun, J.; Chippindale, A. M. Directing the structures of silver-antimony sulphides: a new topological variant of the [Ag5Sb3S8]2− double layer. J. Solid State Chem. 2005, 178, 3414–3419.
(20) Spetzler, V.; Näther, C.; Bensch, W. The new silver(I) thioantimonate(III) [C4N2H14][Ag3Sb3S7] and a new structural variant of the silver(I) thioantimonate(III) [C2N2H9]2[Ag5Sb3S8] both synthesized under solvothermal conditions. J. Solid State Chem. 2006, 179, 3541–3549.
(21) Seidlhofer, B.; Spetzler, V.; Quiroga-Gonzalez, E.; Näther, C.; Bensch, W. New thioantimonates(III) with different Sb:S ratios: solvothermal syntheses and crystal structures of [(C3H10NO)(C3H10N)][Sb8S13], [(C2H8NO)(C2H8N)(CH5N)][Sb8S13], [(C6H16N2)(C6H14N2)][Sb6S10], and [C8H22N2][Sb4S7]. Z. Anorg. Allg. Chem. 2011, 637, 1295–1303.
(22) Spetzler, V.; Näther, C.; Bensch, W. Template-assisted solvothermal synthesis of five copper(I)-thioantimonate(III) composites: crystal structures and optical and thermal properties of (C6N2H18)0.5Cu2SbS3, (C4N3H15)0.5Cu2SbS3, (C8N4H22)0.5Cu2SbS3, (C4N3H14)Cu3Sb2S5, and (C6N4H20)0.5Cu3Sb2S5. Inorg. Chem. 2005, 44, 5805–5812.
(23) Yue, C. Y.; Lei, X. W.; Liu, R. Q.; Zhang, H. P.; Zhai, X. R.; Li, W. P.; Zhou, M.; Zhao, Z. F.; Ma, Y. X.; Yang, Y. D. Syntheses, crystal structures, and photocatalytic properties of a series of mercury thioantimonates directed by transition metal complexes. Cryst. Growth Des. 2014, 14, 2411–2421.
(24) Zhang, M.; Sheng, T. L.; Wang, X.; Hu, S. M.; Fu, R. B.; Chen, J. S.; He, Y. M.; Qin, Z. T.; Shen, C. J.; Wu, X. T. Synthesis and crystal structure of two new heterometallic thioantimonates(III) [Ni(pda)2]CuI4SbIII2S6 and [Ni(dien)2]CuISbIII3S6. CrystEngComm. 2010, 12, 73–76.
(25) Zhang, C.; Ji, M.; Ji, S. H.; An, Y. L. Mild solvothermal syntheses and characterization of layered copper thioantimonates(III) and thioarsenate(III). Inorg. Chem. 2014, 53, 4856–4860.
(26) Wang, K. Y.; Zhou, L. J.; Feng, M. L.; Huang, X. Y. Assembly of novel organic-decorated quaternary TM-Hg-Sb-Q compounds (TM = Mn, Fe, Co; Q = S, Se) by the combination of three types of metal coordination geometries. Dalton Trans. 2012, 41, 6689–6695.
(27) Tang, W. W.; Tang, C. Y.; Wang, F.; Chen, R. H.; Zhang, Y.; Jia, D. X. Solvothermal syntheses, crystal structures, and properties of new mercury(II)–thioantimonates(III) and a mixed-valent thioantimonate(III, V). J. Solid State Chem. 2013, 199, 287–294.
(28) Wang, K. Y.; Ye, D.; Zhou, L. J.; Feng, M. L.; Huang, X. Y. Novel mercury selenidoantimonates with structures ranging from one-dimensional ribbon to three-dimensional open-framework. Dalton Trans. 2013, 42, 5454–5461.
(29) Yang, B.; Wang, L.; Han, J.; Zhou, Y.; Song, H. B.; Chen, S. Y.; Zhong, J.; Lv, L.; Niu, D. M.; Tang, J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 2014, 26, 3135–3143.
(30) Ramasamy, K.; Gupta, R. K.; Palchoudhury, S.; Ivanov, S.; Gupta, A. Layer-structured copper antimony chalcogenides (CuSbSexS2–x): stable electrode materials for supercapacitors. Chem. Mater. 2015, 27, 379–386.
(31) Ramasamy, K.; Sims, H.; Butler, W. H.; Gupta, A. Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): a ternary layered sulfide. J. Am. Chem. Soc. 2014, 136, 1587–1598.
(32) Suehiro, S.; Horita, K.; Yuasa, M.; Tanaka, T.; Fujita, K.; Ishiwata, Y.; Shimanoe, K.; Kida, T. Synthesis of copper-antimony-sulfide nanocrystals for solution-processed solar cells. Inorg. Chem. 2015, 54, 7840–7845.
(33) Sheldrick, G. M. SHELX-97 Program for Crystal Structure Determination 1997.
(34) Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria) 2001.
(35) Kanatzidis, M. G.; Chou, J. H. Isolation of β-Ag3AsSe3, (Me3NH)[Ag3As2Se5], K5Ag2As3Se9, and KAg3As2S5: novel solid state silver thio- and selenoarsenates from solvento-thermal synthesis. J. Solid State Chem. 1996, 127, 186–201.