Theoretical Study on the Structural and Optoelectronic Properties of the Linear Perfluorooctane Sulfonate (PFOS)
鲍玉峰;刘子忠;刘东升;葛湘巍
内蒙古师范大学化学与环境科学学院
Theoretical Study on the Structural and Optoelectronic Properties of the Linear Perfluorooctane Sulfonate (PFOS)
BAO Yu-Feng;LIU Zi-Zhong;LIU Dong-Sheng;GE Xiang-Wei
Chemistry and Environment Science College, Inner Mongolia Key Laboratory of Green Catalysis, Computer and Information Engineering College,
Inner Mongolia Normal University 010022, China
摘要The perfluoroalkyl substances (PFS) have attracted considerable attention in recent years as a persistent global pollutant to be able to bioaccumulate in higher organisms. In this paper, theoretical analysis on electronic structures, optoelectronic properties and absorption spectra properties of the perflurooctane sulfonate (PFOS) in gas phase have been investigated by using the DFT/TD-DFT method. The geometric structures, electrostatic potentials, energy gaps, ionization potentials, electron affinities, frontier molecular orbital, excitation energies and absorption spectra for the ground state of PFOS were calculated. The result indicates that the ability of accepting electron of neutral PFOS is larger than that of anionic PFOS, while the electron excited by UV irradiation from HOMO to LUMO in the anionic PFOS is easier than that in the neutral PFOS.
Abstract:The perfluoroalkyl substances (PFS) have attracted considerable attention in recent years as a persistent global pollutant to be able to bioaccumulate in higher organisms. In this paper, theoretical analysis on electronic structures, optoelectronic properties and absorption spectra properties of the perflurooctane sulfonate (PFOS) in gas phase have been investigated by using the DFT/TD-DFT method. The geometric structures, electrostatic potentials, energy gaps, ionization potentials, electron affinities, frontier molecular orbital, excitation energies and absorption spectra for the ground state of PFOS were calculated. The result indicates that the ability of accepting electron of neutral PFOS is larger than that of anionic PFOS, while the electron excited by UV irradiation from HOMO to LUMO in the anionic PFOS is easier than that in the neutral PFOS.
鲍玉峰;刘子忠;刘东升;葛湘巍. Theoretical Study on the Structural and Optoelectronic Properties of the Linear Perfluorooctane Sulfonate (PFOS)[J]. 结构化学, 2013, 32(9): 1348-1356.
BAO Yu-Feng;LIU Zi-Zhong;LIU Dong-Sheng;GE Xiang-Wei. Theoretical Study on the Structural and Optoelectronic Properties of the Linear Perfluorooctane Sulfonate (PFOS). CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2013, 32(9): 1348-1356.
(1) Lehmler, H. J. Synthesis of environmentally relevant fluorinated surfactants—a review. Chemosphere 2005, 58, 1471–1496.
(2) Vecitis, C. D.; Park, H.; Cheng, J.; Mader, B. T.; Hoffmann, M. R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Engin China 2009, 3, 129–151.
(3) Shi, Y. L.; Pan, Y. Y.; Wang, J. M.; Cai, Y. Q. Perfluorinated chemicals related environmental problems. Prog. Chem. 2009, 21, 370–375.
(4) Rayne, S.; Forest, K. Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemics, levels and patterns in waters and wasterwaters, and treatment methods. J. Environ. Sci. Health. 2009, 44, 1145–1199.
(5) Moriwaki, H.; Takagi, Y.; Tanaka, M.; Tsuruho, K.; Okitsu, K.; Maeda, Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ Sci. Technol. 2005, 39, 3388–3392.
(6) Vecitis, C. D.; Park, H.; Cheng, J.; Mader, T. B.; Hoffmann, M. R. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) into inorganic products.
J. Phys. Chem. A 2008, 112, 4261–4270.
(7) Hori, H.; Nagaoka, Y.; Yamamoto, A.; Sano, T.; Yamashita, N.; Taniyasu, S.; Kutsuna, S. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ. Sci. Technol. 2006, 40, 1049–1054.
(8) Hori, H.; Nagaoka, Y.; Sano, T.; Kutsuna, S. Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water. Chemosphere. 2008, 70, 800–806.
(9) 3M Company. Environmental and Health Assessment of Perfluorooctane Sulfonic Acid and Its Salts. Environmental Protection Agency U.S. Washington, DC 2003. AR-226-1486.
(10) Hidaka, H.; Jou, H.; Nohara, K.; Zhao, J. Photocatalystic degradation of the hydrophobic pesticide permethrin in fluoro surfactant/TiO2 aqueous dispersions. Chemosphere 1992, 25, 1589–1597.
(11) Yuan, Q.; Raxikrishna, R.; Valsaraj, K. T. Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania. Sep. Purif. Technol. 2001, 24, 309–318.
(12) Hori, H.; Hayakawa, E.; Einaga, H.; Kutsuna, S.; Koike, K.; Ibusuki, T.; Kitagawa, H.; Arakawa, R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environ. Sci. Technol. 2004, 38, 6118–6124.
(13) Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388.
(14) Yamamoto, T.; Noma, Y.; Sakai, S.; Shibata, Y. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology 2007, 41, 5660–5665.
(15) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional
of the electron density. Phys. Rev. 1988, B37, 785–789.
(16) Torres, F. J.; Ochoa-Herrera, V.; Blowers, P.; Sierra-Alvarez, R. Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 2009, 76, 1143–1149.
(17) Campillo, M. M.; Diez, M. N.; Lamsabhi, A. M. Thermodynamic stability of neutral and anionic PFOS: a gas-phase, n-octanol, and water theoretical study. J. Phys. Chem. A 2010, 114, 10148–10155.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT 2009.
(19) Rayne, S.; Forest, K.; Friesen, K. J. Relative gas-phase free energies for the C3 through C8 linear and branched perfluorinated sulfonic acids: implications for kinetic versus thermodynamic control during synthesis of technical mixtures and predicting congener profile inputs to environ. J. Mol. Struct.: Theochem. 2008, 869, 81–82.
(20) Erkoc, S.; Erkoc, F. Structural and electronic properties of perchlorocoronene. J. Mol. Struct. Theochem. 2001, 549, 289–293.
(21) Lehmler, H. J.; Rama, R.; Nauduri, D.; Vargo, J. D.; Parkin, S. Synthesis and structure of environmentally relevant perfluorinated sulfonamides. J. Fluorine Chem. 2007, 128, 595–607.
(22) Ochoa-Herrera, V.; Sierra-Alvarez, R.; Somogyi, A.; Jacobsen, N. E.; Wysocki, V. H. Reductive defluorination of perfluorooctane sulfonate. Environ. Sci. Technol. 2008. 42, 3260–3264.
(23) Han, L. Z.; Wang, Z.; Hua, Y. J.; Ren, A. M.; Liu, Y. L.; Liu, P. J. Optoelectronic properties of
9,9-bis-(3-(9-phenyl-carbazoyl))-2,7-dipyrenylfluorene. Acta Chimmica Sinica 2012, 70, 579–584.
(24) Wang, Y.; Zhang, P. Y.; Gang, P. N.; Hao, C. N. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light. Journal of Hazardous Materials 2008, 160, 181–186.
(25) Chen, J.; Zhang, P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science & Technology 2006, 54(11–12), 317–325.
(26) Chen, J.; Zhang, P.; Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet
light. Journal of Environmental Sciences. 2007, 19, 387–390.
(27) Panchangam, S. C.; Yu, C. L.; Shaik, K. L.; Cheng, F. L. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere 2009, 77, 242–248.